The PASCAL Visual Object Classes Challenge

2007 (VOC2007) Development Kit

Mark Everingham John Winn
June 7, 2007

Contents
1 Challenge 3
2 Data 3
2.1 Classification/Detection Image Sets 3
2.2 Segmentation Taster Image Sets 4
2.3 Person Layout Taster Image Sets 4
2.4 Ground Truth Annotation 6
2.5 Segmentation Taster Ground Truth 6
2.6 Person Layout Taster Ground Truth 7
3 Classification Task 8
3.1 Task 8
3.2 Competitions 8
3.3 Submission of Results L. 8
3.4 Evaluation. 9
4 Detection Task 9
4.1 Task e 9
4.2 Competitionso 9
4.3 Submission of Results 10
4.4 Evaluation. e 10
5 Segmentation Taster 11
5.1 Task o 11
5.2 Competitions 11
5.3 Submission of Results 11
5.4 Evaluation. 11
6 Person Layout Taster 12
6.1 Task e 12
6.2 Competitions 12
6.3 Submission of Results, .. 12
6.4 Evaluation. 13

7 Development Kit 14

7.1 Installation and Configuration 14
7.2 Example Code 15
7.2.1 Example Classifier Implementation 15
7.2.2 Example Detector Implementation 15
7.2.3 Example Segmenter Implementation 15
7.2.4 Example Layout Implementation 16

7.3 Non-MATLAB Users i it 16
8 Using the Development Kit 16
81 ImageSets 16
8.1.1 Classification/Detection Task Image Sets 16
8.1.2 Classification Task Image Sets 16
8.1.3 Segmentation Taster Image Sets 17
8.1.4 Person Layout Taster Image Sets 18

8.2 Development Kit Functions 18
8.2.1 VOCinit o v 18
8.2.2 PASreadrecord(filename) 18
8.2.3 viewanno(imgset) 21

8.3 Classification Functions 21
8.3.1 VOCevalcls(VOCopts,id,cls,draw) 21

8.4 Detection Functions oL 21
8.4.1 VOCevaldet(VOCopts,id,cls,draw) 21
8.4.2 wviewdet(id,cls,onlytp) 21

8.5 Segmentation Functions 22
8.5.1 create_segmentations_from detections(id,confidence) 22

8.5.2 VOCevalseg(VOCopts,id) 22
8.5.3 VOClabelcolormap(N) 22

8.6 Layout Functions 22
8.6.1 VOCwritexml(rec,path) 22
8.6.2 VOCevallayout(VOCopts,id,cls,draw) 22

1 Challenge

The goal of this challenge is to recognize objects from a number of visual object
classes in realistic scenes (i.e. not pre-segmented objects). There are twenty
object classes:

e person

e bird, cat, cow, dog, horse, sheep

e acroplane, bicycle, boat, bus, car, motorbike, train

e bottle, chair, dining table, potted plant, sofa, tv/monitor
There are two main tasks:

e Classification: For each of the classes predict the presence/absence of at
least one object of that class in a test image.

e Detection: For each of the classes predict the bounding boxes of each
object of that class in a test image (if any).

In addition, there are two “taster” tasks operating on a subset of the provided
data:

e Segmentation: For each pixel in a test image, predict the class of the
object containing that pixel or ‘background’ if the object does not belong
to one of the twenty specified classes.

e Person Layout: For each ‘person’ object in a test image (if any) predict the
bounding box of the person, the presence/absence of parts (head /hands/feet),
and the bounding boxes of those parts.

2 Data

The VOC2007 database contains a total of 9,963 annotated images. The data
is released in two phases: (i) training and validation data with annotation is
released with this development kit; (ii) test data without annotation is released
at a later date. After completion of the challenge, annotation for the test data
will be released.

2.1 Classification/Detection Image Sets

For the main tasks — classification and detection, there are four sets of images
provided:

train: Training data

val: Validation data (suggested). The validation data may be used as addi-
tional training data (see below).

trainval: The union of train and val.

test: Test data. The test set is not provided in the development kit. It will be
released in good time before the deadline for submission of results.

Table 1: Statistics of the main image sets. Object statistics list only the ‘non-
difficult’ objects used in the evaluation.

train val trainval test
img obj img obj img obj img obj

Aeroplane 112 151 126 155 238 306 - -
Bicycle 116 176 127 177 243 353 - -
Bird 180 243 150 243 330 486 - -

Boat 81 140 100 150 181 290 — -
Bottle 139 253 105 252 244 505 - -

Bus 97 115 89 114 186 229 - -

Car 376 625 337 625 713 1250 - -

Cat 163 186 174 190 337 376 - -

Chair 224 400 221 398 445 798 - -

Cow 69 136 72 123 141 259 - -
Diningtable 97 103 103 112 200 215 - -
Dog 203 253 218 257 421 510 - -

Horse 139 182 148 180 287 362 — -
Motorbike 120 167 125 172 245 339 — -
Person 1025 2358 983 2332 2008 4690 - -
Pottedplant 133 248 112 266 245 514 - -
Sheep 48 130 48 127 96 257 - -
Sofa 111 124 118 124 229 248 - -

Train 127 145 134 152 261 297 - -
Tvmonitor 128 166 128 158 256 324 - -
Total 2501 6301 2510 6307 5011 12608 - -

Table 1 summarizes the number of objects and images (containing at least
one object of a given class) for each class and image set. The data has been split
into 50% for training/validation and 50% for testing. The distributions of images
and objects by class are approximately equal across the training/validation and
test sets. In total there are 9,963 images, containing 24,640 annotated objects.

2.2 Segmentation Taster Image Sets

For the segmentation taster task, corresponding image sets are provided as in
the classification/detection tasks. These image sets are subsets of those for the
main tasks, for which pixel-wise segmentations have been prepared. Table 2
summarizes the number of objects and images (containing at least one object
of a given class) for each class and image set. In addition to the segmented
images for training and validation, participants are free to use the un-segmented
training/validation images supplied for the main classification/detection tasks.

2.3 Person Layout Taster Image Sets

For the person layout taster task, corresponding image sets are provided as in
the classification/detection tasks. These image sets are subsets of those for the
main tasks, for which all people have been annotated with part layout (head,

Table 2: Statistics of the segmentation taster image sets.

train val trainval test
img obj img obj img obj img obj

Aeroplane 12 17 13 16 25 33 - -
Bicycle 11 16 10 16 21 32 — -
Bird 13 15 13 20 26 35 - -

Boat 11 15 9 29 20 44 - -

Bottle 17 30 13 28 30 58 - -

Bus 14 16 11 15 25 31 - -

Car 14 34 17 36 31 70 - -

Cat 15 15 15 18 30 33 - -

Chair 26 52 20 48 46 100 - -

Cow 11 27 10 16 21 43 - -
Diningtable 14 15 17 17 31 32 - -
Dog 17 20 14 19 31 39 - -

Horse 15 18 17 19 32 37 — -
Motorbike 11 15 15 16 26 31 - -
Person 92 194 79 154 171 348 - -
Pottedplant 17 33 17 45 34 78 - -
Sheep 8 41 13 22 21 63 - -

Sofa 17 22 13 15 30 37 - -

Train 8 14 15 17 23 31 - -
Tvmonitor 20 24 13 16 33 40 - -

Total 209 633 213 582 422 1215 - -

Table 3: Statistics of the person layout taster image sets. Object statistics list
only the ‘person’ objects for which layout information (parts) is present.

train val trainval test
img obj img obj img obj img obj

Person 166 220 156 219 322 439 - -
All 318 - 328 - 646 - — -

hands, feet). Table 3 summarizes the number of ‘person’ objects annotated with
layout for each image set.

Participants are free to additionally use any images and/or annotation in the
main trainval set supplied for the classification/detection tasks. For example,
participants treating this task as a two stage “detect then estimate layout” task
may use the additional examples of people to train the detection stage.

2.4 Ground Truth Annotation

Objects of the twenty classes listed above are annotated in the ground truth.
For each object, the following annotation is present:

e class: the object class e.g. ‘car’ or ‘bicycle’

e bounding box: an axis-aligned rectangle specifying the extent of the
object visible in the image.

e view: ‘frontal’; ‘rear’; ‘left’ or ‘right’. The views are subjectively marked
to indicate the view of the ‘bulk’ of the object. Some objects have no view
specified.

e ‘truncated’: an object marked as ‘truncated’ indicates that the bounding
box specified for the object does not correspond to the full extent of the
object e.g. an image of a person from the waist up, or a view of a car
extending outside the image.

e ‘difficult’: an object marked as ‘difficult’ indicates that the object is con-
sidered difficult to recognize, for example an object which is clearly visible
but unidentifiable without substantial use of context. Objects marked as
difficult are currently ignored in the evaluation of the challenge.

In preparing the ground truth, annotators were given a detailed list of guidelines
on how to complete the annotation. These are available on the main challenge
web-site [1].

2.5 Segmentation Taster Ground Truth

For the segmentation image sets, each image has two corresponding types of
ground truth segmentation provided:

e class segmentation: each pixel is labelled with the ground truth class or
background.

a. b. C.

Figure 1: Example of segmentation taster ground truth. a. Training image
b. Class segmentation showing background, car, horse and person labels. The
cream-colored ‘void’ label is also used in border regions and to mask difficult ob-
jects. c. Object segmentation where individual object instances are separately
labelled.

e object segmentation: each pixel is labelled with an object number (from
which the class can be obtained) or background.

Figure 2.5 gives an example of these two types of segmentation for one of the
training set images. The ground truth segmentations are provided to a high de-
gree of accuracy, but are not pixel accurate, as this would have greatly extended
the time required to gather these segmentations. Instead, they were labelled so
that a bordering region with a width of five pixels may contain either object
or background. Bordering regions are marked with a ‘void’ label (index 255),
indicating that the contained pixels can be any class including background. The
void label is also used to mask out ambiguous, difficult or heavily occluded ob-
jects and also to label regions of the image containing objects too small to be
marked, such as crowds of people. All void pixels are ignored when comput-
ing segmentation accuracies and should be treated as unlabelled pixels during
training.

In addition to the ground truth segmentations given, participants are free
to use any of the ground truth annotation for the classification/detection tasks.

2.6 Person Layout Taster Ground Truth

For the person layout taster task, ‘person’ objects are additionally annotated
with three ‘parts’:

e head — zero or one per person
e hand — zero, one, or two per person
e foot — zero, one, or two per person

For each annotated person, the presence or absence of each part is listed, and
for each part present, the bounding box is specified. All ‘person’ objects in the

image sets used in the person layout taster are annotated with parts, and there
are no ‘difficult’ objects.

3 Classification Task
3.1 Task

For each of the twenty object classes predict the presence/absence of at least
one object of that class in a test image. The output from your system should
be a real-valued confidence of the object’s presence so that a precision/recall
curve can be drawn. Note that the use of precision/recall differs from the ROC
analysis used in VOC2006 — see section 3.4. Participants may choose to tackle
all, or any subset of object classes, for example “cars only” or “motorbikes and
cars”.

3.2 Competitions

Two competitions are defined according to the choice of training data: (i) taken
from the VOC trainval data provided, or (ii) from any source excluding the
VOC test data provided:

No. Task Training data Test data
1 Classification trainval test
2 Classification | any but VOC test test

In competition 1, any annotation provided in the VOC train and val sets
may be used for training, for example bounding boxes or particular views e.g.
‘frontal’ or ‘left’. Participants are not permitted to perform additional manual
annotation of either training or test data.

In competition 2, any source of training data may be used ezcept the provided
test images. Researchers who have pre-built systems trained on other data are
particularly encouraged to participate. The test data includes images from
“flickr” (www.flickr.com); this source of images may not be used for training.
Participants who have acquired images from flickr for training must submit them
to the organizers to check for overlap with the test set.

3.3 Submission of Results

A separate text file of results should be generated for each competition (1 or 2)
and each class e.g. ‘car’. Each line should contain a single identifier and the
confidence output by the classifier, separated by a space, for example:

compl_cls_test_car.txt:
000004 0.702732
000006 0.870849
000008 0.532489
000018 0.477167
000019 0.112426

Greater confidence values signify greater confidence that the image contains
an object of the class of interest. The example classifier implementation (sec-
tion 7.2.1) includes code for generating a results file in the required format.

3.4 Evaluation

The classification task will be judged by the precision/recall curve. The principal
quantitative measure used will be the average precision (AP). Example code for
computing the precision/recall and AP measure is provided in the development
kit. Note that this differs from the VOC2006 evaluation measure. Comparison
of VOC2006 results using AP and area under ROC curve (AUC) show the
same average ranking of methods, but it has been decided that precision/recall
analysis gives more intuitive and sensitive evaluation than the ROC analysis
used in VOC2006.

Images which contain only objects marked as ‘difficult’ (section 2.4) are
currently ignored by the evaluation. The final evaluation may include separate
results including such “difficult” images, depending on the submitted results.

Participants are expected to submit a single set of results per method em-
ployed. Participants who have investigated several algorithms may submit one
result per method. Changes in algorithm parameters do not constitute a differ-
ent method — all parameter tuning must be conducted using the training and
validation data alone.

4 Detection Task

4.1 Task

For each of the twenty classes predict the bounding boxes of each object of
that class in a test image (if any). Each bounding box should be output with
an associated real-valued confidence of the detection so that a precision/recall
curve can be drawn. Participants may choose to tackle all, or any subset of
object classes, for example “cars only” or “motorbikes and cars”.

4.2 Competitions

Two competitions are defined according to the choice of training data: (i) taken
from the VOC trainval data provided, or (ii) from any source excluding the
VOC test data provided:

No. Task Training data Test data
3 Detection trainval test
4 | Detection | any but VOC test test

In competition 3, any annotation provided in the VOC train and val sets
may be used for training, for example bounding boxes or particular views e.g.
‘frontal’ or ‘left’. Participants are not permitted to perform additional manual
annotation of either training or test data.

In competition 4, any source of training data may be used ezcept the provided
test images. Researchers who have pre-built systems trained on other data are
particularly encouraged to participate. The test data includes images from
“fickr” (www.flickr.com); this source of images may not be used for training.
Participants who have acquired images from flickr for training must submit them
to the organizers to check for overlap with the test set.

4.3 Submission of Results

A separate text file of results should be generated for each competition (3 or 4)
and each class e.g. ‘car’. Each line should be a detection output by the detector
in the following format:

<image identifier> <confidence> <left> <top> <right> <bottom>

where (left,top)-(right,bottom) defines the bounding box of the detected
object. The top-left pixel in the image has coordinates (1, 1). Greater confidence
values signify greater confidence that the detection is correct. An example file
excerpt is shown below. Note that for the image 000006, multiple objects are
detected:

comp3_det_test_car.txt:
000004 0.702732 89 112 516 466
000006 0.870849 373 168 488 229
000006 0.852346 407 157 500 213
000006 0.914587 2 161 55 221
000008 0.532489 175 184 232 201

The example detector implementation (section 7.2.2) includes code for generat-
ing a results file in the required format.

4.4 Evaluation

The detection task will be judged by the precision/recall curve. The principal
quantitative measure used will be the average precision (AP). Example code for
computing the precision/recall and AP measure is provided in the development
kit.

Detections are considered true or false positives based on the area of overlap
with ground truth bounding boxes. To be considered a correct detection, the
area of overlap a, between the predicted bounding box B, and ground truth
bounding box By, must exceed 50% by the formula:

area(Bp N By)
area(B, U By;)

(1)

Qo
Example code for computing this overlap measure is provided in the develop-
ment kit. Multiple detections of the same object in an image are considered
false detections e.g. 5 detections of a single object is counted as 1 correct detec-
tion and 4 false detections — it is the responsibility of the participant’s system
to filter multiple detections from its output.

Objects marked as ‘difficult’ (section 2.4) are currently ignored by the evalua-
tion. The final evaluation may include separate results including such “difficult”
images, depending on the submitted results.

Participants are expected to submit a single set of results per method em-
ployed. Participants who have investigated several algorithms may submit one
result per method. Changes in algorithm parameters do not constitute a differ-

ent method — all parameter tuning must be conducted using the training and
validation data alone.

10

5 Segmentation Taster

5.1 Task

For each test image pixel, predict the class of the object containing that pixel
or 'background’ if the object does not belong to one of the twenty specified
classes. The output from your system should be an indexed image with each
pixel index indicating the number of the inferred class (1-20) or zero, indicating
background.

5.2 Competitions

A single competition is defined:

No. Task Training data | Test data
5 Segmentation trainval test

Any annotation provided in the VOC train and val sets may be used for
training, for example segmentation, bounding boxes or particular views e.g.
‘frontal’ or ‘left’. Both the images with and without segmentation provided
may be used if desired. Participants are not permitted to perform additional
manual annotation of either training or test data.

5.3 Submission of Results

Submission of results should be as collections of PNG format indexed image
files, one per test image, with pixel indices from 0 to 20. The example seg-
menter implementation (section 7.2.3) includes code for generating results in
the required format.

Along with the submitted image files, participants should also state whether
their method used segmentation training data only or both segmentation and
bounding box training data.

5.4 Evaluation

The segmentation taster task will be judged by average segmentation accuracy
across the twenty classes and the background class. The segmentation accuracy
for a class is the number of correctly labeled pixels of that class, divided by
the total number of pixels of that class in the ground truth labeling. Code
is provided to compute segmentation accuracies for each class, and the overall
average accuracy (see section 8.5.2).

Participants are expected to submit a single set of results per method em-
ployed. Participants who have investigated several algorithms may submit one
result per method. Changes in algorithm parameters do not constitute a differ-
ent method — all parameter tuning must be conducted using the training and
validation data alone.

11

6 Person Layout Taster

6.1 Task

For each ‘person’ object in a test image (if any) detect the person, predicting the
bounding box of the person, the presence/absence of parts (head/hands/feet),
and the bounding boxes of those parts. Each person detection should be out-
put with an associated real-valued confidence of the detection so that a preci-
sion/recall curve can be drawn.

This task is an extension of the detection task for the ‘person’ class only.
To be considered a correct detection, the predicted bounding box of the person,
the parts predicted to be present, and the predicted bounding boxes of those
parts, must all be correct.

6.2 Competitions

Two competitions are defined according to the choice of training data: (i) taken
from the VOC trainval data provided, or (ii) from any source excluding the
VOC test data provided:

No. | Task Training data Test data
6 | Layout trainval test
7 | Layout | any but VOC test test

In competition 6, any annotation provided in the VOC train and val sets
may be used for training, for example bounding boxes or particular views e.g.
‘frontal’ or ‘left’. Participants are not permitted to perform additional manual
annotation of either training or test data.

In competition 7, any source of training data may be used except the provided
test images. Researchers who have pre-built systems trained on other data are
particularly encouraged to participate. The test data includes images from
“flickr” (www.flickr.com); this source of images may not be used for training.
Participants who have acquired images from flickr for training must submit them
to the organizers to check for overlap with the test set.

6.3 Submission of Results

To support the hierarchical (person+parts) nature of this task, an XML format
has been adopted for submission of results. A separate XML file of results
should be generated for each competition (6 or 7). The overall format should
follow:

<results>
<layout>
. detection 1 ...
</layout>
<layout>
. detection 2 ...
</layout>
</results>

Each detection is represented by a <layout> element. The order of detections
is not important. An example detection is shown here:

12

<layout>

<confidence>0.8</confidence>
<bndbox>
<xmin>1</xmin>
<ymin>160</ymin>
<xmax>160</xmax>
<ymax>352</ymax>
</bndbox>
<part>
<class>head</class>
<bndbox>
<xmin>102.0885</xmin>
<ymin>160.6685</ymin>
<xmax>147.6362</xmax>
<ymax>212.7389</ymax>
</bndbox>
</part>
<part>
<class>hand</class>
<bndbox>
<xmin>91.2736</xmin>
<ymin>262.1854</ymin>
<xmax>119.3386</xmax>
<ymax>283.1362</ymax>
</bndbox>
</part>
</layout>

The <image> element specifies the image identifier. The <confidence> element
specifies the confidence of the detection, used to generate a precision/recall
curve as in the detection task. The <bndbox> element specifies the predicted
bounding box for the person.

Each <part> element specifies the detection of a particular part of the person
e.g. head/hand. If the part is predicted to be absent/invisible, the correspond-
ing element should be omitted. For each part, the <class> element specifies the
type of part: head, hand or foot. The <bndbox> element specifies the predicted
bounding box for that part; bounding boxes are specified in image co-ordinates
and need not be contained in the predicted person bounding box.

To ease creation of the required XML results file for MATLAB users, a
function is included in the development kit to convert MATLAB structures to
XML. See the VOCwritexml function (section 8.6.1). The example person layout
implementation (section 7.2.4) includes code for generating a results file in the
required format.

6.4 Evaluation

The person layout task will be judged by the precision/recall curve. The princi-
pal quantitative measure used will be the average precision (AP). Example code
for computing the precision/recall and AP measure is provided in the develop-

13

ment kit.
To be considered a true positive, each detection and corresponding layout
prediction must satisfy three criteria:

e predicted bounding box of person overlaps ground truth by at least 50%

e set and number of predicted parts matches ground truth exactly e.g.
{head, hand, hand} or {head, hand, foot}

e predicted bounding box of each part overlaps ground truth by at least
50%

The overlap between bounding boxes is computed as in the detection task.
Note that in the case of multiple parts of the same type e.g. two hands, it is
not necessary to predict which part is which.

7 Development Kit

The development kit is packaged in a single gzipped tar file containing MATLAB
code and (this) documentation. The images, annotation, and lists specifying
training/validation sets for the challenge are provided in a separate archive
which can be obtained via the VOC web pages [1].

7.1 Installation and Configuration

The simplest installation is achieved by placing the development kit and chal-
lenge databases in a single location. After untarring the development kit, down-
load the challenge image database and untar into the same directory, resulting
in the following directory structure:

V0OCdevkit/ % development kit
V0Cdevkit/VOCcode/ % VOC utility code
VOCdevkit/results/V0C2007/ % your results on V0C2007
VOCdevkit/results/V0C2006/ % your results on V0C2006
VOCdevkit/local/ % example code temp dirs
V0Cdevkit/V0C2007/ImageSets % image sets
V0Cdevkit/V0OC2007/Annotations % annotation files
V0Cdevkit/V0C2007/JPEGImages % images

V0Cdevkit/V0C2007/SegmentationObject % segmentations by object
V0Cdevkit/V0OC2007/SegmentationClass % segmentations by class

If you set the current directory in MATLAB to the VOCdevkit directory you
should be able to run the example functions:

e cxample_classifier
e cxample_detector
e cxample_segmenter

e example_layout

14

If desired, you can store the code, images/annotation, and results in separate
directories, for example you might want to store the image data in a common
group location. To specify the locations of the image/annotation, results, and
working directories, edit the VOCinit.m file, e.g.

% change this path to point to your copy of the PASCAL VOC data
VOCopts.datadir=’/homes/group/V0Cdata/’;

% change this path to a writable directory for your results
VOCopts.resdir=’/homes/me/V0OCresults/’;

% change this path to a writable local directory for the example code
VOCopts.localdir=’/tmp/’;

Note that in developing your own code you need to include the VOCdevkit/VOCcode
directory in your MATLAB path, e.g.

>> addpath /homes/me/code/V0Cdevkit/VOCcode

7.2 Example Code

Example implementations are provided for all tasks. The aim of these (minimal)
implementations is solely to demonstrate use of the code in the development kit.

7.2.1 Example Classifier Implementation

The file example_classifier.m contains a complete implementation of the clas-
sification task. For each VOC object class a simple classifier is trained on the
train set; the classifier is then applied to the val set and the output saved to
a results file in the format required by the challenge; a precision/recall curve is
plotted and the ‘average precision’ (AP) measure displayed.

7.2.2 Example Detector Implementation

The file example_detector.m contains a complete implementation of the de-
tection task. For each VOC object class a simple (and not very successfull)
detector is trained on the train set; the detector is then applied to the val set
and the output saved to a results file in the format required by the challenge;
a precision/recall curve is plotted and the ‘average precision’ (AP) measure
displayed.

7.2.3 Example Segmenter Implementation

An example segmenter is provided which converts detection results into seg-
mentation results, using create_segmentations_from detections (described
below). For example:

>> example_detector;
>> example_segmenter;

This runs the example detector, converts the detections into segmentations and
displays a table of per-class segmentation accuracies, along with an overall av-
erage accuracy.

15

7.2.4 Example Layout Implementation

The file example_layout.m contains a complete implementation of the person
layout task. For each VOC object class a simple (and not very successful!)
detector and layout predictor is trained on the train set; the detector is then
applied to the val set and the output saved to a results file in the format
required by the challenge; a precision/recall curve is plotted and the ‘average
precision’ (AP) measure displayed.

7.3 Non-MATLAB Users

For non-MATLAB users, the file formats used for the VOC2007 data should be
straightforward to use in other environments. Image sets (see below) are vanilla
text files. Annotation files are XML format and should be readable by any
standard XML parser. Images are stored in JPEG format, and segmentation
ground truth in PNG format.

8 Using the Development Kit

The development kit provides functions for loading annotation data. Example
code for computing precision/recall curves and segmentation accuracy, and for
viewing annotation is also provided.

8.1 Image Sets
8.1.1 Classification/Detection Task Image Sets

The V0C2007/ImageSets/Main/ directory contains text files specifying lists of
images for the main classification/detection tasks.

The files train.txt, val.txt, trainval.txt and test.txt list the im-
age identifiers for the corresponding image sets (training, validation, train-
ing+validation and testing). Each line of the file contains a single image iden-
tifier. The following MATLAB code reads the image list into a cell array of
strings:

imgset=’train’;
ids=textread(sprintf (VOCopts.imgsetpath,imgset),’%s’);

For a given image identifier ids{i}, the corresponding image and annotation
file paths can be produced thus:

imgpath=sprintf (VOCopts.imgpath,ids{i});
annopath=sprintf (VOCopts.annopath,ids{i});

Note that the image sets used are the same for all classes. For each competition,
participants are expected to provide output for all images in the test set.
8.1.2 Classification Task Image Sets

To simplify matters for participants tackling only the classification task, class-
specific image sets with per-image ground truth are also provided. The file
V0C2007/ImageSets/Main/<class>_<imgset>.txt contains image identifiers and

16

ground truth for a particular class and image set, for example the file car_train.txt
applies to the ‘car’ class and train image set.

Each line of the file contains a single image identifier and ground truth label,
separated by a space, for example:

000601 -1
000604 O
000610 1

The following MATLAB code reads the image list into a cell array of strings
and the ground truth label into a corresponding vector:

imgset="train’;

cls=’car’;

[ids,gt]=textread(sprintf (VOCopts.clsimgsetpath,
cls,imgset),’%s %d’);

There are three ground truth labels:

-1: Negative: The image contains no objects of the class of interest. A classi-
fier should give a ‘negative’ output.

1: Positive: The image contains at least one object of the class of interest.
A classifier should give a ‘positive’ output.

0: “Difficult”: The image contains only objects of the class of interest marked
as ‘difficult’. The output of the classifier for this image does not affect its
evaluation.

The “difficult” label indicates that all objects of the class of interest have
been annotated as “difficult”, for example an object which is clearly visible but
difficult to recognize without substantial use of context. Currently the eval-
uation ignores such images, contributing nothing to the precision/recall curve
or AP measure. The final evaluation may include separate results including
such “difficult” images, depending on the submitted results. Participants are
free to omit these images from training or include as either positive or negative
examples.

8.1.3 Segmentation Taster Image Sets

The V0C2007/ImageSets/Segmentation/ directory contains text files specify-
ing lists of images for the segmentation taster task.

The files train.txt, val.txt, trainval.txt and test.txt list the im-
age identifiers for the corresponding image sets (training, validation, train-
ing+validation and testing). Each line of the file contains a single image iden-
tifier. The following MATLAB code reads the image list into a cell array of
strings:

imgset=’train’;
ids=textread(sprintf (VOCopts.seg.imgsetpath,imgset),’%s’);

For a given image identifier ids{i}, file paths for the corresponding image,
annotation, segmentation by object instance and segmentation by class can be
produced thus:

17

imgpath=sprintf (VOCopts.imgpath,ids{il});
annopath=sprintf (VOCopts.annopath,ids{i});
clssegpath=sprintf (VOCopts.seg.clsimgpath,ids{i});
objsegpath=sprintf (VOCopts.seg.instimgpath,ids{i});

Participants are expected to provide output for all images in the test set.

8.1.4 Person Layout Taster Image Sets

For the person layout taster task, participants should use the image sets provided
for the main classification/detection tasks.

8.2 Development Kit Functions
8.2.1 VOCinit

The VOCinit script initializes a single structure VOCopts which contains options
for the PASCAL functions including directories containing the VOC data and
options for the evaluation functions (not to be modified).

The field classes lists the object classes for the challenge in a cell array:

VOCopts.classes={’aeroplane’, ’bicycle’,’bird’, ’boat’,...
’bottle’,’bus’,’car’,’cat’, ...
’chair’,’cow’,’diningtable’, ’dog’, ...
’horse’,’motorbike’,’person’,’pottedplant’,...
’sheep’,’sofa’,’train’,’tvmonitor’};

The field testset specifies the image set used by the example evaluation
functions for testing:

VOCopts.testset="val’; % use validation data for development

Other fields provide, for convenience, paths for the image and annotation
data and results files. The use of these paths is illustrated in the example
implementations.

Running on VOC2006 test set. The flag V0C2006 defined at the start of
the VOCinit.m script specifies whether the VOC2006 or VOC2007 data should
be used. This changes the directories used for image sets and images and the
results directory. To run on the VOC2006 test set, set the flag to “true” as
indicated in the script.

8.2.2 PASreadrecord(filename)

The PASreadrecord function reads the annotation data for a particular image
from the annotation file specified by filename, for example:

>> rec=PASreadrecord(sprintf (VOCopts.annopath, ’0000587))
rec =

folder: ’V0C2007’
filename: ’000058. jpg’

18

source: [1x1 struct]
size: [1x1 struct]
segmented: 0O
imgname: ’V0C2007/JPEGImages/000058. jpg’
imgsize: [500 375 3]
database: ’The V0C2007 Database’
objects: [1x4 struct]

The imgname field specifies the path (relative to the main VOC data path)

of the corresponding image.

The imgsize field specifies the image dimen-

sions as (width,height,depth). The database field specifies the data source
(VOC2007). The segmented field specifies if a segmentation is available for this
image. The folder and filename fields provide an alternative specification of

the image path, and size an alternative specification of the image size:

>> rec.size

ans =

width: 500

height: 375
depth: 3

The source field contains additional information about the source of the image
e.g. web-site and owner. This information is obscured until completion of the

challenge.

Objects annotated in the image are stored in the struct array objects, for

example:

>> rec.objects(1)

ans =
class: ’person’
view: 7’
truncated: O
difficult: 0O
label: ’PASperson’
orglabel: ’PASperson’
bbox: [334 1 436 373]
bndbox: [1x1 struct]
polygon: []
mask: []
hasparts: 1
part: [1x4 struct]

The class field contains the object class. The view field contains the view:
Frontal, Rear, Left (side view, facing left of image), Right (side view, facing
right of image), or an empty string indicating another, or un-annotated view.
The truncated field being set to 1 indicates that the object is “truncated”
in the image. The definition of truncated is that the bounding box of the object
specified does not correspond to the full extent of the object e.g. an image of

19

a person from the waist up, or a view of a car extending outside the image.
Participants are free to use or ignore this field as they see fit.

The difficult field being set to 1 indicates that the object has been anno-
tated as “difficult”, for example an object which is clearly visible but difficult to
recognize without substantial use of context. Currently the evaluation ignores
such objects, contributing nothing to the precision/recall curve. The final evalu-
ation may include separate results including such “difficult” objects, depending
on the submitted results. Participants may include or exclude these objects
from training as they see fit.

The bbox field specifies the bounding box of the object in the image, as
[left,top,right,bottom]. The top-left pixel in the image has coordinates
(1,1). The bndbox field specifies the bounding box in an alternate form:

>> rec.objects(1) .bndbox

ans =
xmin: 334
ymin: 1
xmax: 436
ymax: 373

For backward compatibility, the label and orglabel fields specify the PAS-
CAL label for the object, comprised of class, view and truncated/difficult flags.
The polygon and mask specify polygon/per-object segmentations, and are not
provided for the VOC2007 data.

The hasparts field specifies if the object has sub-object “parts” annotated.
For the VOC2007 data, such annotation is available for a subset of the ‘person’
objects, used in the layout taster task. Object parts are stored in the struct
array part, for example:

>> rec.objects(1) .part(1)
ans =

class: ’head’
view: 7’
truncated: O
difficult: O
label: ’PAShead’
orglabel: ’PAShead’
bbox: [337 2 382 66]
bndbox: [1x1 structl]

polygon: []

mask: []
hasparts: 0

part: []

The format of object parts is identical to that for top-level objects. For the
‘person’ parts in the VOC2007 data, parts are not annotated with view, or
truncated /difficult flags. The bounding box of a part is specified in image

20

coordinates in the same way as for top-level objects. Note that the object parts
may legitimately extend outside the bounding box of the parent object.
8.2.3 viewanno(imgset)

The viewanno function displays the annotation for images in the image set
specified by imgset. Some examples:

>> viewanno(’Main/train’);

>> viewanno(’Main/car_val’);

>> viewanno(’Layout/train’);

>> viewanno(’Segmentation/val’);

8.3 Classification Functions
8.3.1 VO0Cevalcls(VOCopts,id,cls,draw)

The VOCevalcls function performs evaluation of the classification task, com-
puting a precision/recall curve and the average precision (AP) measure. The
arguments id and cls specify the results file to be loaded, for example:

>> [rec,prec,ap]=V0Cevalcls(VOCopts,’compl’,’car’,true);

See example_classifier for further examples. If the argument draw is true,
the precision/recall curve is drawn in a figure window. The function returns
vectors of recall and precision rates in rec and prec, and the average precision
measure in ap.

8.4 Detection Functions
8.4.1 VO0OCevaldet(VOCopts,id,cls,draw)

The VOCevaldet function performs evaluation of the detection task, computing
a precision/recall curve and the average precision (AP) measure. The arguments
id and cls specify the results file to be loaded, for example:

>> [rec,prec,ap]=V0Cevaldet (VOCopts,’comp3’,’car’,true);

See example_detector for further examples. If the argument draw is true, the
precision/recall curve is drawn in a figure window. The function returns vectors
of recall and precision rates in rec and prec, and the average precision measure
in ap.

8.4.2 viewdet(id,cls,onlytp)

The viewdet function displays the detections stored in a results file for the
detection task. The arguments id and cls specify the results file to be loaded,
for example:

>> viewdet (’comp3’,’car’,true)

If the onlytp argument is true, only the detections considered true positives by
the VOC evaluation measure are displayed.

21

8.5 Segmentation Functions
8.5.1 create_segmentations_from detections(id,confidence)

This function creates segmentation results from detection results.

create_segmentations_from detections(id) creates segmentations from
the detection results with specified identifier e.g. comp3. This is achieved
by rendering the bounding box for each detection in class order, so that later
classes overwrite earlier classes (e.g. a person bounding box will overwrite an
overlapping an aeroplane bounding box). All detections will be used, no matter
what their confidence level.

create_segmentations_from detections(id,confidence) does the same,
but only detections above the specified confidence will be used.

See example_segmenter for an example.

8.5.2 VO0Cevalseg(VOCopts,id)

The VOCevalseg function performs evaluation of the segmentation task, com-
puting a confusion matrix and segmentation accuracies for the segmentation
task. It returns per-class accuracies, average overall accuracy and a confusion
matrix, for example:

>> [accuracies,avacc,conf] = VOCevalseg(VOCopts, ’comp3’)

See example_segmenter for another example. This function will also display a
table of overall and per-class accuracies.

8.5.3 VOClabelcolormap(IN)

The VOClabelcolormap function creates the color map which has been used for
all provided indexed images. You should use this color map for writing your
own indexed images, for consistency. The size of the color map is given by N,
which should generally be set to 256 to include a color for the ‘void’ label.

8.6 Layout Functions
8.6.1 VOCwritexml(rec,path)

The VOCwritexml function writes a MATLAB structure array to a correspond-
ing XML file. It is provided to support the creation of XML results files for the
person layout taster. An example of usage can be found in example_layout.

8.6.2 VO0Cevallayout(VOCopts,id,cls,draw)

The VOCevallayout function performs evaluation of the person layout task,
computing a precision/recall curve and the average precision (AP) measure.
The arguments id and cls specify the results file to be loaded, for example:

>> [rec,prec,ap]=V0Cpr(VOCopts, ’comp6’,’person’,true) ;

See example_layout for further examples. If the argument draw is true, the
precision/recall curve is drawn in a figure window. The function returns vectors
of recall and precision rates in rec and prec, and the average precision measure
in ap.

22

Acknowledgements

We gratefully acknowledge the following, who spent many long hours providing
annotation for the VOC2007 database: Moray Allan, Patrick Buehler, Terry
Herbert, Anitha Kannan, Julia Lasserre, Alain Lehmann, Mukta Prasad, Till
Quack, John Quinn, Florian Schroff. We are also grateful to James Philbin and
Ondra Chum for additional assistance.

The preparation and running of this challenge is supported by the EU-funded
PASCAL Network of Excellence on Pattern Analysis, Statistical Modelling and
Computational Learning.

References

[1] The PASCAL Visual Object Classes Challenge (VOC2007). http://www.
pascal-network.org/challenges/VOC/voc2007/index.html.

23

