1. Supervised and unsupervised deep learning

- Deep representations can be obtained with
 - Unsupervised learning: informative preservation
 - E.g., Stacked autoencoders (SAE), DBN, DBM
 - Generating data from feature representations (related to invertibility)
 - Supervised learning: task-specific, not necessarily invertible

- Unsupervised deep learning (DL) as pretraining for supervised DL

2. Augmenting classification networks

 a. Inverting 16-layer VGGNet
 - SAE
 - SWWAE (layer-wise architecture)
 - SWWAE (all layers)

 b. Inverting AlexNet

 - SAE
 - SWWAE

3. Invertibility of large-scale classification networks

 a. Micro-architectures for SAE & SWWAE
 - Ordinary SAE
 - SWWAE (SWWAE only)

 b. Inverting AlexNet

 - SAE
 - SWWAE

 c. Inverting 16-layer VGGNet

 - SAE
 - SWWAE

 d. Observations & Hypotheses

 - Max-pooling is the main source of information loss (SWWAE sufficiently recovers it)
 - Convolutional filters and non-linearity cause minor information loss

4. Improving large-scale classification networks with decoding pathways

 a. Experiments
 - 16-layer VGGNet on ILSVRC2012
 - Single crop: 224px patch at center
 - Convolution: dense sampling

 b. Conclusions

 - A simple and effective way to incorporate unsupervised objectives into large-scale classification network learning.
 - We improved the image classification performance of the 16-layer VGGNet, a strong baseline model, by a noticeable margin.
 - Comparison among the variants of our models
 - Pooling switch connections in SWWAE slightly benefit classification performance.
 - The decoding pathways mainly help the supervised objective reach a better optimum.
 - The layer-wise reconstruction loss can regularize the solution to the joint objective.

Main references: