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Abstract

Deep neural networks can model images with rich latent

representations, but they cannot naturally conceptualize

structures of object categories in a human-perceptible way.

This paper addresses the problem of learning object struc-

tures in an image modeling process without supervision.

We propose an autoencoding formulation to discover land-

marks as explicit structural representations. The encoding

module outputs landmark coordinates, whose validity is en-

sured by constraints that reflect the necessary properties for

landmarks. The decoding module takes the landmarks as a

part of the learnable input representations in an end-to-end

differentiable framework. Our discovered landmarks are se-

mantically meaningful and more predictive of manually an-

notated landmarks than those discovered by previous meth-

ods. The coordinates of our landmarks are also comple-

mentary features to pretrained deep-neural-network repre-

sentations in recognizing visual attributes. In addition, the

proposed method naturally creates an unsupervised, per-

ceptible interface to manipulate object shapes and decode

images with controllable structures. The project web page:

http://ytzhang.net/projects/lmdis-rep

1. Introduction

Computer vision seeks to understand object structures

that reflect the physical states of objects and show invari-

ance to individual appearance changes. Such intrinsic struc-

tures can serve as intermediate representations for high-

level visual understanding. However, manual annotations

or designs of object structures (e.g., skeleton, semantic

parts) are costly and barely available for most object cate-

gories, making the automatic representation learning of ob-

ject structure an attractive solution to this challenge.

Modern neural networks can learn latent representations

to effectively solve various vision problems, including im-

age classification [26, 53, 56, 20], segmentation [32, 40,

21], object detection [17, 80, 49], human pose estima-

tion [39], 3D reconstruction [13, 67, 14], and image gen-

eration [25, 18, 43]. Several existing studies [17, 76, 1]

observe that these representations naturally encode massive

templates of particular visual patterns. However, little evi-

dence suggests that deep neural networks can naturally con-

ceptualize the intrinsic structures of an object category com-

pactly and perceptibly.

We aim at learning the physical parameters of concep-

tualized object structures without supervision. As a typical

representation of intrinsic structures, landmarks represent

the spatial configuration of stable local semantics across dif-

ferent object instances of the same category. Thewlis et al.

[59] proposed an unsupervised method to locate landmarks

at the places where a convolutional neural network can de-

tect stable visual patterns with high spatial equivariance to

image transformations. However, this method did not ex-

plicitly encourage the landmarks to appear at critical loca-

tions for image modeling.

This paper addresses the problem of discovering land-

marks in a generic image modeling process. In particular,

we take landmark discovery as an intermediate step for im-

age autoencoding. To leverage the training signals from

the landmark-based image decoder, gradients need to go

through the landmark coordinates, which makes Thewlis

et al. [59]’s non-differentiable formulation infeasible. With

a different way to calculate landmark coordinates, the im-

age decoding module can make the landmark configuration

informative regarding image reconstruction. We also in-

troduce additional regularization terms to enforce the de-

sirable properties of the detected landmarks and to prevent

the landmark coordinates from encoding irrelevant or re-

dundant latent information.

Our contributions in this paper are as follows.

1. We develop a differentiable autoencoder framework

for object landmark discovery, which allows the image

decoder to propagate training signals back to the land-

mark detection module. We introduce several soft con-

straints to reflect the properties of landmarks, forcing

the discovered representations to be valid landmarks.

2. The proposed method discovers visually meaningful

landmarks without supervision for a variety of ob-

jects. It outperforms the state-of-the-art method re-

garding the accuracy of predicting manually-annotated

landmarks using discovered landmarks, and it per-

forms comparably to fully supervised landmark detec-

tors trained with a significant amount of labeled data.
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3. The discovered landmarks show strong discriminative

performance in recognizing visual attributes.

4. Our landmark-based image decoder is useful for con-

trollable image decoding, such as object shape manip-

ulation and structure-conditioned image generation.

2. Related work

Discriminative part learning. Parts are commonly used

object structures in computer vision. The deformable part-

based model [15] learns object part configurations to op-

timize the object detection accuracy, where similar ideas

are rooted in earlier constellation approaches [16, 66, 6]. A

recent method [72] based on the deep neural network per-

forms end-to-end learning of deformable mixture of parts

for pose estimation. The recurrent architecture [19] and spa-

tial transformer network [23] are also used to discover and

refine object parts for fine-grained image classification [27].

In addition, discriminative mid-level patches can be also

discovered without explicit supervision [54]. Object-part

discovery based on subspace analysis and clustering tech-

niques is also shown to improve neural-network-based im-

age recognition [52]. Unlike the approaches specific to dis-

criminative tasks, our work focuses on learning landmarks

for generic image modeling.

Learning structural representations. To capture the in-

trinsic structures of objects, existing studies [44, 45, 37] dis-

entangle visual content into multiple factors of variations,

like the camera viewpoint, motion, and identity. The physi-

cal parameters of these factors are, however, still embedded

in non-perceptible latent representations. Methods based

on multi-task learning [78, 21, 65, 81] can take conceptual-

ized structures (e.g., landmarks, masks, depth) as additional

outputs. These structures in this setting are designed by hu-

mans and require supervision to learn.

Learning explicit structures for image correspondence.

Object structures create correspondence among object in-

stances. Colocalization [57, 9] realizes the coarsest level

of object correspondence. In a finer granularity, Anchor-

Net [41] learns object parts and their correspondence across

different objects and categories. WarpNet [24] corresponds

images in the same class by estimating the parameter of

a thin plate spline (TPS) transformation [4], and it can

roughly reconstruct 3D point cloud using a single-view im-

age. The 3D interpreter network [67] utilizes 2D landmark

annotations to discover 3D skeletons as the explicit struc-

tures of objects. Our discovered landmarks are denser than

object parts and sparser than 3D points. These landmark

representations are also more sensitive to precise locations

and obtained without supervision.

Landmark discovery with equivariance. Object struc-

tures like landmarks should be equivariant to image trans-

formation, including object and camera motions. Using this

property in 2D image domain, Rocco et al. [50] proposed to

discover TPS control points to match pairs of object images

densely. Thewlis et al. [58] tried to densely map different

objects to a canonical coordinate that reflects object struc-

tures. Instead of learning dense correspondence, Thewlis

et al. [59] took the same equivariance property as the guid-

ance to train deep neural networks for object landmark dis-

covery without manual supervision. A similar idea was

formulated differently using hand-crafted features in early

work [30]. In comparison, our method not only takes the

equivariance as a constraint to ensure the validity of the

landmarks, but also use a differentiable formulation to in-

corporate the landmark coordinates into a generic image

modeling process. Moreover, our discovered landmarks

are more predictive of manually annotated landmarks than

those obtained by Thewlis et al. [59], and our method works

on a broader range of object categories.

Image modeling with landmarks. Many unsupervised

deep learning techniques exist to model visual content,

including stacked autoencoders (SAE) [2, 36], varia-

tional autoencoders [25], generative adversarial networks

(GAN) [18, 43], and auto-regressive networks [63] (e.g.,

PixelCNN [62]). The GAN- and PixelCNN-based image

generators conditioned on given object landmarks are pro-

posed in [46, 47]. In contrast, our method uses the SAE

framework to automatically discover landmarks that are in-

formative for unsupervised image modeling.

Landmark detection. A vast amount of supervised land-

mark detection methods exist in the literature. For hu-

man faces, there are active appearance models [10, 38, 11],

template-based methods [42, 83], regression-based meth-

ods [61, 12, 7, 48], and more recent methods based on deep

neural networks [55, 77, 81, 82, 75, 70, 68, 33, 71]. Land-

mark detection methods are also available for human bod-

ies [73, 60, 39], and birds [75]. We use our discovered land-

marks to predict manually annotated landmarks and com-

pare our method with some recent supervised models.

3. Autoencoding-based landmark discovery

We aim at automatically discovering landmarks as an

explicit representation of visual content. We propose an

autoencoder that encodes landmark coordinates as (a part

of) the encoder outputs (Section 3.1). Without supervision

from hand-crafted labels, we introduce several constraints

to encourage the discovered landmark coordinates to re-

flect the visual concept that agrees with human perception

(Section 3.2). The proposed constraints prevent landmark-

based representations from degenerating to non-perceptible

latent representations. Another pathway of the encoder ex-

tracts the local latent descriptor for each discovered land-

mark (Section 3.3). We use both the landmarks and the la-

tent descriptors to reconstruct the input image (Section 3.4).

This section presents the fully differentiable neural network
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Figure 1: Neural network architectures of our autoencoding framework for unsupervised landmark discovery. See text for the details.

architecture (Figure 1) and training objectives (Section 3.5)

for landmark discovery and unsupervised image modeling.

3.1. Architecture of landmark detector

We formulate landmark localization as the problem of

detecting particular keypoints in the image [39]. Specifi-

cally, each landmark has a corresponding detector, which

convolutionally outputs a detection score map with the de-

tected landmark located at the maximum. In this frame-

work, we use a deep neural network to transform an im-

age I to a (K + 1)-channel detection confidence map D ∈
[0, 1]W×H×(K+1). This map detects K landmarks, and the

(K + 1)-th channel represents background. D’s resolution

W ×H can be either equal to or less than that of I, but they

should have the same aspect ratio.

Inspired by the success of the stacked hourglass network

in human pose estimation [39], we propose a light-weighted

hourglass-style network to get the raw detection score map

R = hourglassℓ(I; θℓ) ∈ R
W×H×(K+1), (1)

where θℓ denotes the parameters. The hourglass-style ar-

chitecture (Appendix G.2) allows detectors to focus on the

critical local patterns at landmark locations while utilizing

higher-level context. Then, we transform the unbounded

raw scores to probabilities and encourage each channel to

detect a different pattern. To this end, we normalize R

across the channels (including the background) using soft-

max and obtain the detection confidence map

Dk(u, v) =
exp(Rk(u, v))

∑K+1
k′=1 exp (Rk′(u, v))

, (2)

where the matrix Dk is the k-th channel of D, and the scalar

Dk(u, v) is the value of Dk at the pixel (u, v). Later, we

also use the vector D(u, v) ∈ [0, 1]K+1 to denote the multi-

channel values of D at (u, v). The same notation conven-

tion applies to other tensors of three axes.

Taking Dk as a weighting map, we use the weighted

mean coordinate as the location of the k-th landmark, i.e.,

(xk, yk) =
1

ζk

H
∑

v=1

W
∑

u=1

(u, v) ·Dk(u, v), (3)

where ζk =
∑H

v=1

∑W

u=1 Dk(u, v) is the spatial normal-

ization factor. This formulation enables back-propagating

the gradient from the downstream neural network through

the landmark coordinates unless Dk’s mass is totally con-

centrated in a single pixel or totally uniformly distributed,

which rarely happens in practice. As a shorthand notation,

we write the landmarks and landmark detector as

ℓ = [x1, y1, . . . , xK , yK ]⊤ = landmark(I; θℓ). (4)

The left half of the blue pathway in Figure 1 illustrates the

landmark detector.

3.2. Visual concept of landmarks

The elements in ℓ are supposed to be the discovered land-

mark coordinates, but so far, there is no guarantee to prevent

them from being arbitrary latent representations. Therefore,

we propose the following soft constraints as regularizers to

enforce the desirable properties for landmarks.

Concentration constraint As a detection confidence map

for a single location, the mass of Dk need to be concen-

trated in a local region. Taking Dk/ζk (spatially normalized

as in (3)) as the density of a bivariate distribution on the im-

age coordinate, we compute its variance σ2
det,u and σ2

det,v

along the two axes. We define the concentration constraint

loss as follows to encourage both variances to be small:

Lconc = 2πe
(

σ2
det,u + σ2

det,v

)2
. (5)
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This equation makes Lconc the exponential of the entropy

of the isotropic Gaussian distribution N ((xk, yk), σ
2
detI),

where σ2
det = (σ2

det,u + σ2
det,v)/2, and I is the identity

matrix. This Gaussian distribution is an approximation of

Dk/ζk, and lower entropy means a more peaked distribu-

tion. Note that, formally, this approximation is

Dk(u, v) = (1/WH)N
(

(u, v); (xk, yk), σ
2
detI
)

. (6)

Separation constraint Ideally, the autoencoder training

objective can automatically encourage the K landmarks to

be distributed at different local regions so that the whole

image can be reconstructed. However, the initial random-

ness can make the landmarks, defined as the mean coordi-

nates weighted by D as in (3), all around the image center

in the beginning of the training. This can lead to local op-

tima from which the gradient descent may not escape (see

Appendix F.2). To circumvent this difficulty, we introduce

an explicit loss to spatially separate the landmarks:

Lsep =

1,...,K
∑

k 6=k′

exp

(

−
‖(xk′ , yk′)− (xk, yk)‖

2
2

2σ2
sep

)

. (7)

Equivariance constraint A landmark should locate a sta-

ble local pattern (with definite semantics). This requires

landmarks to show equivariance to image transformations.

More specifically, a landmark should move according to the

transformation (e.g., camera and object motion) applied to

the image if the corresponding visual semantics still exist

in the transformed image. Let g(·, ·) be a coordinate trans-

formation that map image I to I
′(u, v) = I(g(u, v)), and

ℓ
′ = [x′

1, y
′
1, . . . , x

′
K , y′K ]⊤ = landmark(I′). We ideally

have g(x′
k, y

′
k) = (xk, yk), inducing the soft constraint

Leqv =

K
∑

k=1

‖g(x′
k, y

′
k)− (xk, yk)‖

2
2 , (8)

This loss function is well-defined when g is known. Inspired

by Thewlis et al. [59], we simulate g by a thin plate spline

(TPS) [4] with random parameters. We use random trans-

lation, rotation, and scaling to determine the global affine

component of the TPS; and, we spatially perturb a set of

control points to determine the local TPS component. Be-

sides the conventional way of selecting TPS control points

at a predefined uniform grid (as used in [59]), we also take

the landmarks detected by the current model as the control

points to improve simulated transformation’s focus on key

image patterns. The two sets of control points are alterna-

tively used in each optimization iteration (see Appendix F.3

for details). Moreover, when training sample appear in the

form of video, we can also take the dense motion flow as g
and the actual next frame as I′.

Cross-object correspondence Our model does not explic-

itly ensure the semantic correspondence among the land-

marks discovered on different object instances. The cross-

object semantic stability of the landmarks mainly relies on

the fact that visual patterns activating the same convolu-

tional filter are likely to share semantic similarities.

3.3. Local latent descriptors

For simple images, like in MNIST [29] (see results for

MNIST in Appendix B), multiple landmarks can be enough

to describe the object shapes. For most natural images,

however, landmarks are insufficient to represent all visual

content, so extra latent representations are needed to encode

complementary information. Though necessary, the latent

representations should not encode too much holistic infor-

mation that can overwhelm the image structures reflected by

the landmarks. Otherwise, the autoencoder would not pro-

vide enough driving force to localize landmarks at mean-

ingful locations. To achieve this trade-off, we attach a low-

dimensional local descriptor to each landmark.

An hourglass-style neural network (see Appendix G.2) is

introduced to obtain a feature map F, which has the same

size as the detection confidence map D:

F = hourglassf (I; θf ) ∈ R
W×H×S . (9)

Note that F is in a feature space shared among all landmarks

and has S channels.

For each landmark, we use an average pooling weighted

by a soft mask centered at the landmark to extract the local

feature in the shared space. In particular, we take Dk, which

is the Gaussian approximation of the detection confidence

map defined in (6), as the soft mask. Then, a learnable lin-

ear operator is introduced for each landmarks to map the

feature representation into a lower-dimensional individual

space. Thus, the latent descriptor for the k-th landmark is

fk = Wk

H
∑

v=1

W
∑

u=1

(

Dk(u, v) · F(u, v)
)

∈ R
C , (10)

where C < S. The landmark-specific linear operator en-

ables each landmark descriptor to encode a particular pat-

tern in limited bits. We can also use (10) to extract a

low-dimensional background descriptor. Since it is un-

reasonable to approximate the background confidence map

with a Gaussian distribution, we exactly set DK+1 =
DK+1/ζK+1. Note that fk is differentiable regarding both

the feature map and the detection confidence map.

Putting all latent descriptors together, we have f =
vec
(

[f1, f2, . . . , fK+1] ∈ R
C×(K+1)

)

. The left half of the

red pathway in Figure 1 illustrates the neural network ar-

chitecture to extract the landmark descriptors.
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3.4. Landmark­based decoder

We approximately invert the landmark coordinates to the

detection confidence map D̃ ∈ R
W×H×(K+1). Concretely,

we use the probability density of an isotropic Gaussian dis-

tribution centered at each landmark to get raw score maps

R̃k(u, v) =N
(

(u, v); (xk, yk), σ
2
decI

)

, R̃K+1 = 1. (11)

and the background channel is set to 1. R̃ is then normal-

ized across channels to obtain the reconstructed detection

confidence map

D̃(u, v) = R̃k(u, v)/

K+1
∑

k=1

R̃k(u, v). (12)

Figure 1 (right half of the blue pathway) illustrates this.

For each landmark (including the background) descrip-

tor fk, we transform it into a shared feature space by the

landmark-specific operator W̃k and an activation function

(e.g., LeakyReLU [34]). Using D̃ as the soft switches for

global unpooling, we recover the feature map

F̃(u, v) =
K+1
∑

k=1

D̃k(u, v) · τ(W̃kfk) ∈ R
W×H×S , (13)

where τ(·) is the non-linear activation function. This is il-

lustrated by the right half of the red pathway in Figure 1.

Though alternative neural network architectures are

available (e.g., in [46, 47]) for landmark-conditioned im-

age decoding, our proposed architecture enables back-

propagation through the landmark coordinates. The Gaus-

sian variance σ2
dec determines how much the neighboring

pixels can contribute to the gradients for the landmark

coordinates and how sharp the descriptor is localized in

the recovered feature map. While it is important to in-

clude more pixels for back-propagation in the early stage

of training, sharpness becomes more important as train-

ing goes on. To balance the two needs, we obtain mul-

tiple versions of D̃, F̃ under different values of σdec, say,

(D̃1, F̃1), (D̃2, F̃2), . . . , (D̃M , F̃M ).
Let J· · ·K be the channel-wise concatenation. We use an-

other hourglass-style network to reconstruct the image

Ĩ = hourglassd(JD̃
1, F̃1, . . . , D̃M , F̃M K; θd) (14)

The gray pathway in Figure 1 illustrates the image decoder.

3.5. Overall training objective

The image reconstruction loss Lrecon drives the training

of the entire autoencoder. We define Lrecon as ‖I − Ĩ‖2F ,

and I is normalized to [0, 1]. The full loss is LAE =

λreconLrecon + λconcLconc + λsepLsep + λeqvLeqv. (15)

Ours

Thewlis 

et al. 

Ours

Thewlis 

et al.

Errors
Forehead 

landmark to 

the left

Lower-lip 

landmark to 

the right

Mouth-corner 

landmark on 

the forehead

Right-eyebrow 

landmark on 

the left side

Forehead 

landmark to 

the left

Figure 2: Discovering 10 landmarks on CelebA images. All fig-

ures for Thewlis et al. [59]’s come from their paper. The last row

shows unsuccessful cases from [59] with error descriptions below.

4. Experiments

We evaluate our method on a variety of datasets, includ-

ing CelebA [31] and AFLW [35] for human faces, the cat

head dataset [79], a car dataset built from PASCAL 3D [69],

shoe images from UT Zappos50k [74], human pose images

from Human3.6M [22, 8], MNIST (Appendix B), and ani-

mal images from AwA [28] (Appendix D).

Section 4.1 describes the datasets and shows the qualita-

tive results of landmark discovery. In Section 4.2, we use

the discovered landmarks to predict human-annotated land-

marks, and we take the landmark detection accuracy as an

indicator of the quality of discovered landmark. Section 4.3

demonstrates that our discovered landmarks can serve as ef-

fective image representations to predict shape-related facial

attributes on CelebA. In Section 4.3, we show that our de-

coding module and the automatically discovered landmarks

can be used to manipulate the object shapes.

4.1. Landmark discovery on multiple datasets

We train and evaluate landmark discovery models on a

variety of objects. The detailed architectures of the neural

network modules (i.e., hourglassℓ|f |d) depend on the im-

age sizes on different datasets. Appendix G describes im-

plementation details, including data preprocessing, network

architectures, model parameters, and optimization methods.

CelebA Following [59], we use all facial images in the

CelebA training set excluding those also appearing in the

MAFL the test set1 (then 16,1962 images in total) to train

models for landmark discovery. We use the MAFL test-

ing set (1000 images) for all testing cases and reserve the

1The MAFL dataset [81] is a subset of CelebA.
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Figure 3: Discovering 10 landmarks on unaligned head-shoulder

images using our model trained on aligned facial images.

Figure 4: Discovering 30 landmarks on unaligned CelebA images

using our method.

Figure 5: Discovering landmarks on cat head images using our

method. Top row: 10 landmarks; Bottom row: 20 landmarks.

MAFL training set (19,000 images) to train prediction mod-

els for manually-annotated landmarks. By default, we use

the cropped and aligned images provided in the dataset.

As shown in Figure 2, our method can automatically

discover facial landmarks at semantically meaningful and

stable locations, such as the forehead center, eyes, eye-

brows, nose, and mouth corners. Compared to Thewlis

et al. [59]’s method, which results in a few significant errors,

our method can locate landmarks more robustly against

pose variations and occlusions. Interestingly, our method

can work out-of-the-box on head-shoulder portraits with-

out training on exactly the same type of images (Figure 3).

Figure 4 shows that our method can also learn and detect a

larger number (e.g., 30) of high-quality landmarks on un-

aligned facial images. Appendix E.1 shows more results.

AFLW Face images in AFLW are cropped differently

from CelebA. The landmark discovery models (both ours

and Thewlis et al. [59]’s) are pretrained on CelebA and fine-

tuned on the AFLW training set (10,122 images) for adap-

tation. Sampled results on the AFLW testing set (2,991 im-

ages) are in Appendix E.2.

Cat heads Our model is trained on 7,747 cat head images

and tested on 1,257 images. Compared to human faces, cat

heads show more holistic appearance variations. As shown

Figure 6: Discovering 8 landmarks on shoes.

Figure 7: Discovering 10 landmarks on the profile images of cars.

Figure 8: Discovering 16 landmarks on Human3.6M dataset.

in Figure 5, our model can discover consistent landmarks

(e.g., ears, nose, mouth) across different cat species and in-

terestingly predict landmark locations under significant oc-

clusion (the first image). Appendix E.3 shows more results.

Cars We build the profile-view car dataset by cropping the

car images from the PASCAL 3D dataset. This dataset has

a limited number of samples (567 images for training and

63 images for testing). As shown in Figure 7, our method

can still learn meaningful landmarks (e.g., the windshield,

driver-side door, wheels, rear) using a relatively small train-

ing set. Note that we transform the 3D annotations of the

cars to 2D landmarks, so this dataset is ready for quantita-

tive evaluation. Appendix E.4 shows more results.

Shoes We use the same setting as in [59] (49,525, train-

ing images and 500 testing images). As shown in Figure 6,

landmarks are detected at semantically stable locations for

different types of shoes. Appendix E.5 shows more results.

Human3.6M Human3.6M contains human activity videos

in stable backgrounds. We use all 7 subjects in Human3.6M
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training set for our evaluation (6 for training and 1 for val-

idation)2. We consider six activities (direction, discussion,

posing, waiting, greeting, walking), in which human bod-

ies are in the upright direction most of the time, result-

ing in 796,648 image frames for training and 87,975 image

frames for testing. We removed the background using the

off-the-shelf unsupervised background subtraction method

provided in the dataset. The human bodies are cropped and

roughly aligned regarding the foot location so that the ex-

cessive background regions are removed.

Compared to previously mentioned object types, human

bodies have much more shape variations. As shown in

Figure 8, our method can discover roughly consistent land-

marks across a range of poses. In particular, the landmarks

at the head, back, waist, and legs are stable across im-

ages. The landmarks at the arms are relatively less consis-

tent across different poses, but they are still at semantically

meaningful locations. Since the human body appearances

in the frontal and back views are similar, we do not expect

our discovered landmarks to distinguish the left and right

sides of the human body, which means that a landmark at

the left leg in the frontal view can locate the right leg in the

back view. Since the training data is in the video format,

optical flows are used as a short-term self-supervision for

the eqvuivariance constraint in (8). Appendix C describes

more details and results for Human3.6M experiments.

4.2. Prediction of ground truth landmarks

Unsupervised landmark learning is useful because of

its potential to discover object structures that are coher-

ent with the human’s perception. We evaluate discov-

ered landmarks’ quality by predicting manually-annotated

landmarks. Specifically, we use a linear model without a

bias term to regress from the discovered landmarks to the

human-annotated landmarks. Ground truth landmark an-

notations are needed to train this linear regressor. Thewlis

et al. [59] extensively used random TPS to augment both

discovered and labeled landmarks for training (on CelebA

and ALFW). However, we do not use data augmentation for

our method to minimize the complexity of training. Even in

this case, our method shows stronger performance.

Stronger relevance to human-designed landmarks. In

Table 1a, we regress the landmarks discovered using the

models trained on the CelebA training set to the 5 anno-

tated landmarks. The landmark labels in either the CelebA

training set or the much smaller MAFL training set are used

to train the regressor. Our method is not sensitive to the

decreased size of the labeled training set. It outperforms

Thewlis et al. [59]’s by 55% decrease of the landmark de-

tection error and Thewlis et al. [58]’s by 45%. Notably, we

achieve this with 30 discovered landmarks while theirs uses

50 landmarks or dense object frames. Additionally, Table 2

2Training subject IDs: S1,S5,S6,S7,S8,S9; Validation subject IDs: S11.

# discovered

landmarks

Regressor

training set

Thewlis

et al. [59]
Ours

10 CelebA 6.32 3.46

30 CelebA 5.76 3.15

50 CelebA 5.33 -

10 MAFL 7.95 3.46

30 MAFL 7.15 3.16

50 MAFL 6.67 -

(a) Comparison with unsupervised landmark learning meth-

ods on the MAFL testing set.

Method MAFL ALFW

RCPR [5] - 11.60

CFAN [77] 15.84 10.94

Fully TCDCN [82] 07.95 07.65

supervised Cascaded CNN [55] 09.73 08.97

RAR [70] - 07.23

MTCNN [81] 05.39 06.90

Thewlis et al. [59] (50 landmarks) 06.67 10.53

Unsupervised Thewlis et al. [58] (dense frames) 05.83 08.80

discovery Ours (10 landmarks) 03.46 07.01

Ours (30 landmarks) 03.15 06.58

(b) Comparison with supervised methods on the MAFL and ALFW

testing sets.

Full L w/o Lrecon w/o Lconc w/o Lsep w/o Leqv

3.15 3.45 3.91 16.56 8.42

(c) Using ablative training losses of our method. Refer to (15)

for each loss terms. Results are obtained on the MAFL testing set

using 10 discovered landmarks.

Table 1: Mean errors of the annotated landmark prediction on hu-

man face datasets. Errors are in % regarding the biocular distance.

demonstrates the consistent superiority of our method on

the cat head dataset (7 target landmarks3), the car dataset (6

target landmarks), and Human3.6M4 (32 target landmarks).

Figure 9 illustrates the landmark regression results.

Competitive performance compared to fully supervised

methods. Putting the landmark discovery model together

with the linear regressor, we obtain a detector of human-

designed landmarks. Unlike fully supervised methods, our

model is trainable with a huge amount of unlabeled data,

and the linear regressor can be trained using a relatively

small amount of labeled data within a few minutes. Table 1b

demonstrates that our model outperforms previous unsuper-

vised methods and off-the-shelf pretrained fully-supervised

models on the MAFL and AFLW testing sets. On AFLW,

we take the 5 always-visible landmarks as the regression

target. All models reported are either trained on the MAFL

training set or publicly available.

39 annotated landmarks in total. We do not use the 2 at the ears.
4See Appendix C for details
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Figure 9: Prediction of annotated landmarks. Colorful cross: dis-

covered landmark; Red dot: annotated landmark; Circle: regressed

landmark, whose color represent its distance to the annotated land-

marks. See the color bar for the distance (i.e., prediction error).

Dataset Car Cat head Human3.6M

# discovered landmarks 10 24 10 20 16

Thewlis et al. [59] 11.42 11.11 26.76 26.94 7.51

Ours 05.87 05.80 15.35 14.84 4.14

Table 2: Mean errors of the annotated landmark prediction on the

cat heads, cars, and human bodies. Errors are in % regarding the

biocular distance, bi-wheel distance, and image size, respectively.

Landmark detection with few labeled samples. Taking

our model as a detector of manually annotated landmarks,

we find that less than 200 samples are enough for our model

to achieve less than 4% mean error on the MAFL testing

set, which is better than the performance of TCDCN and

MTCNN. Learning curves are provided in Appendix F.1.

Effectiveness of different loss terms. Our method com-

bines several loss terms in the training objective (15). Ta-

ble 1c shows that the removal of any term can cause per-

formance drop of our model. In particular, the removal of

the separation loss can devastate the model, and more de-

tailed discussion about this loss term is in Appendix F.2.

Our new differentiable formulation of the landmark validity

constraints can already lead to a lower landmark detection

error than Thewlis et al. [59]’s. Adding the reconstruction

loss can further improve the accuracy.

4.3. Visual attribute recognition

Landmarks reflect object shapes. We use our discov-

ered landmarks as a feature representation to recognize the

shape-related binary facial attributes (13 labeled attributes

are found) on CelebA. We still take the MAFL testing set for

the quantitative evaluation. A linear SVM is trained for each

attribute on the CelebA training set. We also compare our

landmark coordinates with pretrained FaceNet [51] (Incep-

tionV1) top-layer (128-dim) and top conv-layer (1792-dim)

features for the attribute recognition task. As shown in Ta-

ble 3, our discovered landmarks (60-dim) outperforms the

O
rig
in
al

im
ag
es

M
anipulated

im
ages

Landmarks

Landmarks

M
anipulated

im
ages

O
rig
in
al

im
ag
es

Figure 10: Image manipulation with our discovered landmarks

and landmark-based decoder on the MAFL and Human3.6M test-

ing set. 1st column: input images; 2nd column: discovered land-

marks and reconstructed images; other columns: the red dots for

new landmark locations, the gray lines for the synthetic adjustment

of landmarks, and the images for the decoder outputs.

FaceNet top-layer features for most attributes. The conv-

layer features outperform our landmarks slightly but have a

much higher dimension. Combining the landmark coordi-

nates and the FaceNet features, higher accuracy is achieved.

This suggests that the discovered landmarks are comple-

mentary to image features pretrained on classification tasks.

4.4. Image manipulation and generation

Our jointly trained image decoding module conditioned

its outputs on the input landmarks and their latent descrip-

tors. If the two conditions are disentangled, we should be

able to manipulate the object shape without changing other

appearance factors by adjusting only the landmarks; or, vice

versa. Note that landmark-based image morphing is not a

new topic, and landmark-based hierarchical image decoding

has also been explored recently [46, 64, 47]. However, these

landmarks are all designed and annotated by humans. So

far, little evidence has suggested that the automatically dis-

covered landmarks are accurate and representative enough

as a reliable condition for image generation.

In Figure 10, we synthesize flows to adjust the discov-

ered landmarks of an input image. Fixing the landmark la-

tent descriptors, we obtain realistic facial and human-body

images whose shapes agree with the new landmarks. Other

than the facial and body shape, then appearance factors of

the input image are not visually changed. This result sug-

gests that our image decoding module can synthesize realis-

tic image using the landmarks learned without supervision,

and it also suggests that our discovered landmarks have be-

come an explicit representation disentangled from other fac-

8



Methods

Feature

Dimen-

sion

Arched

Eyebrows

Bags

Under

Eyes

Big

Lips

Big

Nose

Double

Chin

High

Cheek-

bones

Male

Mouth

Slightly

Open

Narrow

Eyes

Oval

Face

Pointy

Nose

Receding

Hairline
Smiling Average

Ours (discovered landmarks) 60 79.4 80.9 76.9 82.3 94.5 82.5 88.4 81.3 88.0 73.2 73.7 92.1 88.8 83.2

FaceNet [51] (top-layer) 128 76.4 80.3 76.8 80.4 94.5 72.6 82.7 74.4 87.9 72.7 73.1 92.2 76.2 80.0

FaceNet (top-layer) + Ours 188 81.3 81.3 77.5 82.6 94.5 83.5 91.2 83.8 88.4 73.7 75.0 92.7 89.9 84.3

FaceNet [51] (conv-layer) 1792 78.8 81.5 77.4 80.5 94.6 77.3 90.0 80.9 88.4 74.2 73.6 92.4 81.5 82.4

FaceNet (conv-layer) + Ours 1852 80.1 81.8 77.2 82.3 94.7 82.1 90.8 85.0 88.6 74.5 73.6 92.4 90.5 84.1

Table 3: Visual attribute recognition using pretrained FaceNet features and our discovered 30 landmarks on the MAFL test set.

Figure 11: Face generation conditioned on discovered landmarks.

tors of variations for image modeling. Implementation de-

tails and more results about unsupervised landmark-based

face manipulation are available in Appendix A.

In Figure 11, instead of adjusting the landmark coordi-

nates, we use the discovered landmarks of a reference image

as the control signal to generate new facial images. Follow-

ing the GAN framework [18], the latent representation of

the generated image is randomly drawn from a prior distri-

bution. As in Reed et al. [46], the landmark coordinates and

latent representation are combined for image generation.

We adopt BEGAN [3] for the discriminator and training ob-

jective. In addition, we apply a cyclic loss for the landmark

coordinates, which encourages the same landmarks to be

detected on the generated images as on the reference image.

Our results provide additional evidence on the usefulness of

the discovered landmarks for image modeling. Implemen-

tation details are in Appendix G.5.

5. Conclusion

We address the problem of unsupervised object land-

mark discovery and take it as an intermediate step of image

representation learning. In particular, a fully differentiable

neural network architecture is proposed for determining the

landmark coordinates, together with soft contraints to en-

force the validity of the detected landmarks. The discovered

landmarks are visually meaningful and quantitatively more

relevant to human-designed landmarks. In our framework,

the discovered landmarks are an explicit part of the learned

image representations. They are disentangled from the la-

tent representations of the other appearance factors. The

landmark-based explicit representations not only provide an

interface for manipulating the image generation process but

also appear to be complementary to pretrained deep-neural-

network features for solving discriminative tasks.
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A. More details and results on face manipulation using unsupervised landmarks

The discovered landmarks constitute the explicitly structural part of the image representation learned by our model. They

provide an interface for humans to manipulate the image representation intuitively. Our decoding module can generate

realistic facial images using the landmark descriptors extracted from a given image and different sets of landmarks.

In addition to the results shown in the main paper, we provide more qualitative results for unsupervised landmark-based

face manipulation in this section. We train models of 10, 20, and 30 landmarks. To evaluate our method on many target

landmarks, we take the landmarks discovered from other images and the interpolation/extrapolation between the landmarks

discovered on two images as the targets.

In this section, we show results for our 30-landmark model (results for our 10,20-landmark model are available as sup-

plementary videos). Figure 12 and 13 show results for manipulating all 30 landmarks. Figure 14 and 15 show results for

manipulating the 3 landmarks at the mouth. Figure 16 and 17 show results for manipulating the 5 landmarks at the mouth

and jaw. Videos are available in the following folders for gradually morphing the landmarks from their original coordinates

to the target by linear interpolation.

• 30-landmark models:

videos/face.30landmark-model.manipulate-{all|mouth|mouthext}-landmarks

• 10,20-landmark models:

videos/face.{10|20}landmark-model.manipulate-{all|mouth}-landmarks

See next page for the figure.
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(a) Video: videos/face.30landmark-model.manipulate-all-landmarks/01.mp4
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(b) Video: videos/face.30landmark-model.manipulate-all-landmarks/02.mp4
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(c) Video: videos/face.30landmark-model.manipulate-all-landmarks/03.mp4
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(d) Video: videos/face.30landmark-model.manipulate-all-landmarks/04.mp4
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(e) Video: videos/face.30landmark-model.manipulate-all-landmarks/06.mp4

Figure 12: Face manipulation by modifying all 30 discovered landmarks on the MAFL testing set. 1st column: input

images; 2nd column: discovered landmarks and reconstructed images; other columns: the red dots denote the target land-

mark locations (gray dots means not too much offset regarding the original landmarks), the gray lines denote the synthetic ad-

justment of landmarks, and the facial images are the decoder outputs. Best viewed in zoom mode. Videos are available at

videos/face.30landmark-model.manipulate-all-landmarks for the morphing process.
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(a) Video: videos/face.30landmark-model.manipulate-all-landmarks/06.mp4
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(b) Video: videos/face.30landmark-model.manipulate-all-landmarks/07.mp4
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(c) Video: videos/face.30landmark-model.manipulate-all-landmarks/08.mp4
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(d) Video: videos/face.30landmark-model.manipulate-all-landmarks/09.mp4
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(e) Video: videos/face.30landmark-model.manipulate-all-landmarks/10.mp4

Figure 13: Continued from Figure 12. Face manipulation by modifying all 30 discovered landmarks on the MAFL testing set.

1st column: input images; 2nd column: discovered landmarks and reconstructed images; other columns: the red dots denote the

target landmark locations (gray dots means not too much offset regarding the original landmarks), the gray lines denote the syn-

thetic adjustment of landmarks, and the facial images are the decoder outputs. Best viewed in zoom mode. Videos are available at

videos/face.30landmark-model.manipulate-all-landmarks for the morphing process.
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(a) Video: videos/face.30landmark-model.manipulate-mouth-landmarks/01.mp4
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(b) Video: videos/face.30landmark-model.manipulate-mouth-landmarks/02.mp4

Landmarks
M
anipulated

im
ages

O
rig

in
al

im
ag
es

(c) Video: videos/face.30landmark-model.manipulate-mouth-landmarks/03.mp4
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(d) Video: videos/face.30landmark-model.manipulate-mouth-landmarks/04.mp4
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(e) Video: videos/face.30landmark-model.manipulate-mouth-landmarks/05.mp4

Figure 14: Face manipulation by modifying 3 discovered mouth landmarks on the MAFL testing set. 1st column: in-

put images; 2nd column: discovered landmarks and reconstructed images; other columns: the red dots denote the target land-

mark locations (gray dots means not too much offset regarding the original landmarks), the gray lines denote the synthetic ad-

justment of landmarks, and the facial images are the decoder outputs. Best viewed in zoom mode. Videos are available at

videos/face.30landmark-model.manipulate-mouth-landmarks for the morphing process.
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(a) Video: videos/face.30landmark-model.manipulate-mouth-landmarks/06.mp4
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(b) Video: videos/face.30landmark-model.manipulate-mouth-landmarks/07.mp4
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(c) Video: videos/face.30landmark-model.manipulate-mouth-landmarks/08.mp4
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(d) Video: videos/face.30landmark-model.manipulate-mouth-landmarks/09.mp4
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(e) Video: videos/face.30landmark-model.manipulate-mouth-landmarks/10.mp4

Figure 15: Continued from Figure 14. Face manipulation by modifying mouth 3 discovered mouth landmarks on the MAFL test-

ing set. 1st column: input images; 2nd column: discovered landmarks and reconstructed images; other columns: the red dots denote

the target landmark locations (gray dots means not too much offset regarding the original landmarks), the gray lines denote the syn-

thetic adjustment of landmarks, and the facial images are the decoder outputs. Best viewed in zoom mode. Videos are available at

videos/face-manipulation-mouth-landmarks for the morphing process.
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(a) Video: videos/face.30landmark-model.manipulate-mouthext-landmarks/01.mp4
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(b) Video: videos/face.30landmark-model.manipulate-mouthext-landmarks/02.mp4
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(c) Video: videos/face.30landmark-model.manipulate-mouthext-landmarks/03.mp4

Landmarks
M
anipulated

im
ages

O
rig

in
al

im
ag
es

(d) Video: videos/face.30landmark-model.manipulate-mouthext-landmarks/04.mp4
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(e) Video: videos/face.30landmark-model.manipulate-mouthext-landmarks/05.mp4

Figure 16: Face manipulation by modifying 6 discovered mouth and jaw landmarks on the MAFL testing set. 1st column: in-

put images; 2nd column: discovered landmarks and reconstructed images; other columns: the red dots denote the target land-

mark locations (gray dots means not too much offset regarding the original landmarks), the gray lines denote the synthetic ad-

justment of landmarks, and the facial images are the decoder outputs. Best viewed in zoom mode. Videos are available at

videos/face.30landmark-model.manipulate-mouthext-landmarks for the morphing process.
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(a) Video: videos/face.30landmark-model.manipulate-mouthext-landmarks/06.mp4
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(b) Video: videos/face.30landmark-model.manipulate-mouthext-landmarks/07.mp4
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(c) Video: videos/face.30landmark-model.manipulate-mouthext-landmarks/08.mp4
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(d) Video: videos/face.30landmark-model.manipulate-mouthext-landmarks/09.mp4
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(e) Video: videos/face.30landmark-model.manipulate-mouthext-landmarks/10.mp4

Figure 17: Continued from Figure 14. Face manipulation by modifying mouth 6 discovered mouth and jaw landmarks on the MAFL

testing set. 1st column: input images; 2nd column: discovered landmarks and reconstructed images; other columns: the red dots

denote the target landmark locations (gray dots means not too much offset regarding the original landmarks), the gray lines denote the

synthetic adjustment of landmarks, and the facial images are the decoder outputs. Best viewed in zoom mode. Videos are available at

videos/face-manipulation-mouthext-landmarks for the morphing process.
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B. Our model without landmark descriptors on MNIST

We train our landmark discovery model without the landmark descriptor pathway on MNIST in two settings: one model

for each digit (Appendix B.1) and one model for all ten digits (Appendix B.2). Using the model for all digits, we can perform

geometrically meaningful morphing between different digits (Appendix B.3), e.g., morphing 2 to 9. Videos for the morphing

process are available in the folder videos/mnist-morphing .

B.1. Models for individual digits

In this section, our landmark discovery model is trained for each digit independently. As shown in Figure 18, the discov-

ered landmarks are consistent within each digit despite the shape variations.

Figure 18: Discovering 7 landmarks on MNIST. Our model is trained independently for each digit.
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B.2. Models for all digits

In this section, we train a single model for all ten digits together. In Figure 19, the corresponding landmarks are shown

in the same color. The landmarks discovered on the same digits are consistent across different image. More interesting,

the corresponding landmarks across different digits are also semantically consistent. For examples, the orange cross is

always in the middle of a digits, the blue cross at the bottom, and the green one at the most left-top part of every digit.

Figure 19: Discovering 7 landmarks on MNIST for all digits. A single model is trained for all ten digits. The corresponding landmarks

for different images are in the same color.
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B.3. Digit morphing using discovered landmarks

Our model trained on the mix of all ten digits can discover corresponding patterns among different digit categories. Using

this model, we can perform geometrically meaningful cross-category morphing. Figure 20 and 21 illustrate the morphing

process. Note that the landmark coordinates constitute the full image representation for MNIST digits. Videos for the

morphing process are available in the folder videos/mnist-morphing .
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Figure 20: Geometric digital morphing using our discovered landmarks and image decoding module. The landmark coordinates are

linearly interpolated between the source digit and the target digit. 1st column: input images; 2nd column: discovered landmarks and

reconstructed images of the source digit; last column: discovered landmarks and reconstructed images of the target digit; other columns:

the red dots denote the target landmark locations (gray dots means not too much offset regarding the original landmarks), the gray lines

denote the synthetic adjustment of landmarks, and the facial images are the decoder outputs. Best viewed in zoom mode. Videos are

available at videos/mnist-morphing for the morphing process.
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Figure 21: Continued from Figure 20. Geometric digital morphing using our discovered landmarks and image decoding module. The

landmark coordinates are linearly interpolated between the source digit and the target digit. 1st column: input images; 2nd column:

discovered landmarks and reconstructed images of the source digit; last column: discovered landmarks and reconstructed images of the

target digit; other columns: the red dots denote the target landmark locations (gray dots means not too much offset regarding the original

landmarks), the gray lines denote the synthetic adjustment of landmarks, and the facial images are the decoder outputs. Best viewed in

zoom mode. Videos are available at videos/mnist-morphing for the morphing process.
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C. Details and more results on Human3.6M

On the Human3.6M dataset, we train our landmark discovery model on six actions: waiting, posing, greeting, directions,

discussions, and walking. We report quantitative results on predicting the 32 annotated landmarks5 (acquired by wearable

markers) using our models trained for the mix of all six actions and each independent action. We also show qualitative results

of the mixed-action model (trained for all six actions).

C.1. Optical flow as self­supervision for equivariance

The Human3.6M training data is in the video format. We can calculate the optical flows between nearby frames and take

them as self-supervision for the equivariance constraint defined in (8). Following the same notations, the two frames are

I and I
′, and the optical flows define the transformation g(·, ·). In particular, we use the Farneback method in OpenCV to

compute the dense optical flows at 5-frame intervals. We then accumulate two optical flow fields to calculate the optical

flows at 10-frame intervals. The 10-frame-interval optical flow fields in addition to the random TPS transform are used in the

equivariance constraint.

Note that using optical flow as the self-supervision for the equivariance constraint can push the landmarks to the back-

ground region. This phenomenon occurs because locating landmarks at image regions with weaker optical flows can result

in low equivariance loss. To prevent trivial landmarks, we encourage the landmarks to be discovered at locations with strong

optical flows. Let Ox and Oy be the x, y components of the optical flow map from the current image to another frame. The

flow magnitude map is On(u, v) = (Ox(u, v))
2
+ (Oy(u, v))

2
. Recall that R̃ is the multi-channel heatmap computed from

the landmark locations. We encourage On and R̃ to have a significant correlation. In particular, loss to encourage

Lflow-prefer = −

∑H

v=1

∑W

u=1 On(u, v)
∑K

k=1 R̃k(u, v)
∑H

v=1

∑W

u=1 On(u, v)
(16)

We use the same loss weight λeqv for Lflow-prefer as Leqv.

Using the above formulation, we can reduce the ground landmark prediction error from 4.91 (without optical flows) to

4.14 (with optical flows). For all experiments on Human3.6M, we use the optical flow as self-supervision for equivariance as

described above.

C.2. Quantitative results

We compare our model with Thewlis et al. [59]’s unsupervised landmark discovery method regarding the annotated-

landmark prediction accuracy. Both models discover 16 landmarks. The whole training set is used to train the linear mapping

from the discovered landmarks to the annotated ones. As discussed in the main paper, we do not expect the two unsupervised

methods to distinguish the frontal and back views. Thus, in the evaluation, we compute the errors against the original

landmark annotations and its left-right-flipped counterpart6, and then we choose the minimum value as the final error. Note

that, when flipping the landmark annotations, the landmarks for the whole body are flipped simultaneously. As to the linear

regressor training, we propose the following training strategy.

1. Figure out the rough orientations of the human body, heuristically. If more than 2/3 of the left-hand side annotated

landmarks are to the right of the right-hand side annotated landmarks, the human is in the frontal view.

2. Train the regressor using the images with the landmark annotations in the frontal view. The other images are ignored in

this step.

3. Use the aforementioned evaluation protocol to determine if the landmark annotations on other images should be flipped

or not. The model is then retrained with all the training images.

4. Repeat the step 3 until the model is converged.

As shown in Table 4, our method outperforms Thewlis et al. [59]’s method significantly. We also report the results obtained

by Newell et al. [39]’s supervised stacked hourglass network using their off-the-shelf pretrained 16-landmark model. Both

unsupervised methods perform worse than the supervised stacked hourglass network. However, our model is unsupervised,

and our neural network architectures are also smaller. We believe that our results show the potential of unsupervised methods

for discovering complicated object structures.

5Some markers are close to each other (e.g., on each foot, there are two markers), so the effective locations annotated by the markers are less than 32

(around 16).
6For examples, we swap the coordinates of the left-shoulder landmark and the right-shoulder landmark.
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Methods
Mixed

Actions
Waiting Posing Greeting Directions Discussion Walking

Unsupervised Thewlis et al. [59] 7.51 7.54 8.56 7.26 6.47 7.93 5.40

Ours (discovered landmarks) 4.14 5.01 4.61 4.76 4.45 4.91 4.61

Supervised Hourglass Newell et al. [39] 2.16 1.88 1.92 2.15 1.62 1.88 2.21

Table 4: Comparison with unsupervised and supervised methods for annotated landmark prediction on the Human 3.6M testing sets. The

error is in % regarding the edge length of the image.

C.3. Qualitative results

We train our model and Thewlis et al. [59]’s model on all six chosen actions and perform the annotated-landmark pre-

diction. Figure 22 shows the side-by-side comparison. In general, our method visually outperforms Thewlis et al. [59]’s.

Figure 23 shows landmark discovery examples, where our method outperforms Thewlis et al. [59]’s method very signifi-

cantly.

See next page for the figure.
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Figure 22: Prediction of 32 annotated landmarks on Human 3.6M. Colorful cross: discovered landmark; Red dot: annotated landmark;

Circle: regressed landmark, whose color represent its distance to the annotated land-marks. See the color bar for the distance (i.e.,

prediction error). Our method shows more deep blue circles (for example, the image in second row second column, the image in last row

second column), which means more landmarks with low error compared with Thewlis et al. [59]
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Figure 23: Discovering 16 landmarks on Human3.6M testing set. We illustrate some cases when our method outperforms Thewlis et al.

[59]’s very significantly.
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D. Results on animals of mixed species

On the animal-with-attributes (AwA) dataset [28], we choose the profile images from five animal categories (antelope, deer,

moose, horse, zebra) and try to detect landmarks on these mixed species of animals. As shown in Figure 24, even though

multiple species of animals with different appearance are mixed, our method can still find several consistent landmarks.

For example, the yellow cross is always on the hoof, the orange cross always above the back and the light green cross at the

buttock. The landmarks are consistently detected despite the significant variations in species, pose and individual appearance.

See next page for the figure.
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Figure 24: Discovering 10 landmarks on mixed animal images of five different species: antelope, deer, moose, horse, zebra
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E. More qualitative results on human faces, cat heads, cars, and shoes

In this section, we show more result of landmark discovery and ground truth landmark prediction compared with Thewlis

et al. [59]. All the shown images are randomly sampled from the test set.

E.1. CelebA

Figure 25: Discovering 10 landmarks on CelebA, the detected landmarks are highly aligned with facial features such as mouth corner,

eyes corner and nose
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Figure 26: Discovering 30 landmarks on CelebA
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Figure 27: Prediction of 5 annotated landmarks on CelebA. Colorful cross: discovered landmark; Red dot: annotated landmark; Circle:

regressed landmark, whose color represent its distance to the annotated land-marks. See the color bar for the distance (i.e., prediction

error). Our method shows more deep blue circles (for example, the image in first row first column, the image in first row fourth column),

which means more landmarks with low error compared with Thewlis et al. [59]
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Figure 28: Discovering 30 landmarks on unaligned CelebA images.
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E.2. AFLW

Figure 29: Discovering 10 landmarks on AFLW
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Figure 30: Discovering 30 landmarks on AFLW
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E.3. Cat heads

Figure 31: Discovering 10 landmarks on Cat Head dataset, our method find some landmarks on the nose, eyes and base of earlobe
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Figure 32: Discovering 20 landmarks on Cat Head dataset
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Figure 33: Prediction of 7 annotated landmarks on cat head. Colorful cross: discovered landmark; Red dot: annotated landmark; Circle:

regressed landmark, whose color represent its distance to the annotated land-marks. See the color bar for the distance (i.e., prediction

error).Our method shows more deep blue circles (for example, the image in fourth row third column, the image in second row first

column), which means more landmarks with low error compared with Thewlis et al. [59]
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E.4. Cars

Figure 34: Discovering 10 landmarks on PASCAL-VOC 3D Car dataset

Figure 35: Discovering 24 landmarks on PASCAL-VOC 3D Car dataset
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Figure 36: Prediction of 6 annotated landmarks on car. Colorful cross: discovered landmark; Red dot: annotated landmark; Circle:

regressed landmark, whose color represent its distance to the annotated land-marks. See the color bar for the distance (i.e., prediction

error).Our method shows more deep blue circles (for example, the image in last row first column, the image in last row last column), which

means more landmarks with low error compared with Thewlis et al. [59]
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E.5. Shoes

Figure 37: Landmark discovery results of our model on shoes using 8 landmarks
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F. Ablative study

F.1. Number of labeled samples for annotated­landmark prediction
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Figure 38: Prediction errors of manually-annotated landmarks on the MAFL testing set when using different numbers of labeled samples

to train the linear regressor.

Taking our model as a detector of manually annotated landmarks, we find that less than 200 samples are enough for our

model to achieve less than 4% mean error on the MAFL testing set, which is better than the performance of two popular off-

the-shelf models. This result suggests that it is possible to train a high-accurate landmark detector using only a few labeled

sample when sufficient unlabeled samples are given to train our unsupervised model. We show its performance versus the

number of labeled samples in Figure 38.

F.2. Evolution of detection confidence map during training

Figure 39 shows the detection confidence maps of an input image at different training stage of our model. In the beginning,

the heatmap shows random values over the whole image. As a result, the landmarks, defined as the mean coordinates weighted

by the confidence maps, are all at the center of the image. As the training goes on, the values gradually becomes spatially

concentrated. With the separation loss defined in (7), the peaked value of each channel of the confidence map can move to a

different location. Without the separation loss, every channel can have a peaked value at the center of the images, resulting

in degenerate landmarks.

1 2 3 4 5 6 7 8 9 10
Discovered

Landmarks

Land-

marks No.

Initial 

(Iter. 0)

No Seperation 

Loss (mid-stage)

No Seperation 

Loss (final)

Full model

(mid-stage)

Full model 

(final)

Figure 39: The evolution of the detection confidence map D during training. The training of a 10-landmark CelebA model is monitored.
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F.3. TPS control points

For the random TPS in our equivariance constraint (defined in (8)), we both use the regular-grid control points and take

the discovered landmarks in the current iteration as the control points. The two sets of control points are alternatively used

in each optimization iteration with 7:3 chance. We do not exhaustively tune the ratio and keep it the same in all experiments.

As shown in Figure 5, the performance of our model is fairly insensitive to this ratio when the other hyper-parameters are

fixed. However, introducing the discovered landmarks as the TPS control points does benefit.

grid:landmark 10:0 1:9 3:7 5:5 7:3 9:1

GT prediction error / % 4.17 3.86 3.46 3.38 3.46 3.41

Table 5: Impact of the ratio between two types of TPS control points (i.e., regular grid and discovered landmarks). Our 10-landmark

CelebA model is trained under different ratios of the TPS control points. The evaluation metric is the ground truth (GT) landmark prediction

errors with the CelebA training set for linear regressor training.

Note that the discovered landmarks are clustered at the center of the image (see discussion about the separation constraint

in Section 3.2) and cannot serve as good TPS control points. As a result, we use only the regular-grid control points in the

beginning and start to apply the previously mentioned ratio after training the model for several thousands of iterations.

G. Implementation details

G.1. Data preprocessing

The main paper and this supplementary materials report results on several datasets. Table 6 summarizes the image size

we used for each each dataset. In our landmark discovery formulation, we need to perform random TPS to calculate the

equivariance constraint in (8). It requires the image to have large enough margins so that the foreground will not be out of

image due to the random transformation. Table 6 also summarizes the image size after padding with the edge values.

Dataset Image size Padded size Remark

CelebA, AFLW, Cat Heads, Shoes 80×80 96×96 -

Profile Cars from PASCAL 3D 64×64 96×96 visualized as W : H = 2 : 1
Animals from AwA 64×64 80×80 -

Human3.6M 128×128 192×192 -

MNIST 28×28 56×56 -

Table 6: Data processing parameters for different dataset.

For different datasets, we crop the foreground images and prepare input images as follows.

CelebA We started from the cropped-and-aligned images (218×178) in CelebA dataset, scaled them to 100×100 pixels and

then cropped the 80×80 center patches.

AFLW The dataset provides annotated bounding boxes. We enlarged the bounding boxes on each image with a margin on

the top (1/4 height of the original bounding box), margins on the left and right (1/8 width of the original bounding box)

so that the cropped facial images look similar to the CelebA data. The cropped images were also scaled to 80×80.

Cat Heads The dataset provides ground truth landmarks on the cat head. We figured out the bounding box for cropping each

image according to the landmarks and then scaled the cropped images to 80×80.

Shoes We scaled the shoe images (102×136) to 64×64, and padded the images to be 80×80 with white margins. We linearly

transformed the color value range from [0, 1] to [0.1, 0.9] to avoid a huge amount of saturated responses for the output

layer with the sigmoid activation. The color was scaled back for visualization.

Cars The PASCAL 3D dataset provides annotations for the orientation and landmarks of several objects. We cropped the

profile car images according to the bounding box of the ground truth landmarks. Slight margins are added to the

bounding box, and the cropped image is scaled to a square image without preserving the aspect ratio.

Animals from AwA We manually annotated bounding boxes and orientation labels (i.e., left, right, frontal, back) for several

types of animals. For each rectangular bounding box, we enlarged its shorter edge to make the box square, cropped
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the patch, and scaled it to 64×64. We ignored the images with frontal and back views, and we flipped the right-facing

animals horizontally so that all animals in the image face to the left.

Human3.6M The human body was cropped using a square bounding box from the original video frames. We use the 3D

landmarks provided in this dataset, acquired by wearable markers, as side information to roughly align the scales and

foot locations of the human bodies in different images. The cropped square images are scaled to 128×128 pixels. We

use the provided segmentation masks, obtained by an off-the-shelf unsupervised background removal method, to mask

out the background image with gray color. For visualization, we show the gray color as white for the printing clarity.
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Type
Kernel 

size

Output 

channels

Output 

size

Input n/a 3 80

Convolution 3 16 80

Convolution 3 16 80

Pooling 2 16 40

Convolution 3 32 40

Convolution 3 32 40

Pooling 2 32 20

Convolution 3 64 20

Convolution 3 64 20

Pooling 2 64 10

Convolution 3 64 10

Convolution 3 64 10

Convolution 3 64 10

Convolution 3 64 10

Upsampling 2 64 20

Convolution 3 64 20

Convolution 3 64 20

Upsampling 2 64 40

Convolution 3 32 40

Convolution 3 32 40

Upsampling 2 32 80

Convolution 3 16 80

Convolution 3 ? *
80

(a) 64×64 (padded to 80×80): 

hourglassℓ

Type
Kernel 

size

Output 

channels

Output 

size

Input n/a 3 80

Convolution 3 32 80

Convolution 3 64 80

Pooling 2 64 40

Convolution 3 128 40

Pooling 2 128 20

Convolution 3 256 20

Pooling 2 256 10

Convolution 3 512 10

Convolution 3 512 10

Upsampling 2 512 20

Convolution 3 256 20

Upsampling 2 128 40

Convolution 3 128 40

Upsampling 2 64 80

Convolution 3 64 80

Convolution 3 64 80

(b) 64×64 (padded to 80×80): 

hourglassf

Type
Kernel 

size

Output 

channels

Output

size

Input n/a 3 96

Convolution 3 32 96

Convolution 3 32 96

Pooling 2 32 48

Convolution 3 64 48

Convolution 3 64 48

Pooling 2 64 24

Convolution 3 64 24

Convolution 3 64 24

Pooling 2 64 12

Convolution 3 64 12

Convolution 3 64 12

Upsampling 2 64 24

Convolution 3 64 24

Convolution 3 64 24

Upsampling 2 64 48

Convolution 3 64 48

Convolution 3 64 48

Upsampling 2 64 96

Convolution 3 32 96

Convolution 3 ? *
96

(c) 64×64 or 80×80 (padded to 96×96):

hourglassℓ

Type
Kernel 

size

Output 

channels

Output

size

Input n/a 3 96

Convolution 3 32 96

Convolution 3 64 96

Pooling 2 64 48

Convolution 3 128 48

Pooling 2 128 24

Convolution 3 256 24

Pooling 2 256 12

Convolution 3 512 12

Convolution 3 512 12

Upsampling 2 512 24

Convolution 3 256 24

Upsampling 2 128 48

Convolution 3 128 48

Upsampling 2 64 96

Convolution 3 64 96

Convolution 3 64 96

(d) 64×64 or 80×80 (padded to 96×96): 

hourglassf

Type
Kernel 

size

Output 

channels

Output

size

Input n/a ? ** 64

Convolution 3 64 64

Pooling 2 64 32

Convolution 3 128 32

Pooling 2 128 16

Convolution 3 256 16

Pooling 2 256 8

Convolution 3 512 8

Pooling 2 512 4

Convolution 3 512 4

Pooling 3 512 4

Convolution 2 512 8

Convolution 3 512 8

Upsampling 2 512 16

Convolution 3 256 16

Upsampling 2 256 32

Convolution 3 128 32

Upsampling 2 128 64

Convolution 3 64 64

Upsampling 2 128 64

Convolution 3 32 128

Convolution 3 3 128

(h) 128×128: 

hourglassd

Type
Kernel 

size

Output 

channels

Output

size

Input n/a 3 192

Convolution 3 32 192

Pooling 2 32 96

Convolution 3 64 96

Pooling 2 64 48

Convolution 3 128 48

Pooling 2 128 24

Convolution 3 256 24

Pooling 2 256 12

Convolution 3 512 12

Pooling 2 512 6

Convolution 3 512 6

Convolution 3 512 6

Upsampling 2 512 12

Convolution 3 512 12

Upsampling 2 512 24

Convolution 3 256 24

Upsampling 2 256 48

Convolution 3 128 48

Upsampling 2 128 96

Convolution 3 64 96

Convolution 3 ? ***
96

(g) 128×128 (padded to 192×192): 

hourglassℓ, hourglassf

Type
Kernel 

size

Output 

channels

Output

size

Input n/a ? ** 64

Convolution 3 64 64

Convolution 3 64 64

Pooling 2 64 32

Convolution 3 128 32

Pooling 2 128 16

Convolution 3 256 16

Pooling 2 256 8

Convolution 3 512 8

Pooling 2 512 4

Convolution 3 512 4

Convolution 3 512 4

Upsampling 2 512 8

Convolution 3 512 8

Upsampling 2 512 16

Convolution 3 256 16

Upsampling 2 128 32

Convolution 3 128 32

Upsampling 2 64 64

Convolution 3 64 64

Convolution 3 3 64

(e) 64×64: 

hourglassd

Type
Kernel 

size

Output 

channels

Output

size

Input n/a ? **
80

Convolution 3 64 80

Convolution 3 64 80

Pooling 2 64 40

Convolution 3 128 40

Pooling 2 128 20

Convolution 3 256 20

Pooling 2 256 10

Convolution 3 512 10

Pooling 2 512 5

Convolution 3 512 5

Convolution 3 512 5

Upsampling 2 512 10

Convolution 3 512 10

Upsampling 2 512 20

Convolution 3 256 20

Upsampling 2 128 40

Convolution 3 128 40

Upsampling 2 64 80

Convolution 3 64 80

Convolution 3 3 80

(f) 80×80: 

hourglassd

? *: decided by the number of landmarks. ? **: decided by the number of landmarks and the dimension of the shared feature space. ? ***: this layer is used only for hourglassℓ, and

the number of channels is decided by the number of landmarks. ? ****: decided by the number of landmarks for hourglassℓ, = 32 for hourglassf , and = 3 for hourglassd. Each

skip-link in (a), (b), (c), (d), and (f) consists of three convolutional layers of 3×3 kernels. Each skip-link in (e), (g), and (h) consists of two convolutional layers of 3×3 kernels.

Figure 40: Architectures of our hourglass-style networks. (a),(b), (c), (d): For 80×80 and 64×64 images, the outputs of hourglassℓ and hourglassf have the same size as the

image. (g): For 128×128 images, the outputs of hourglassℓ and hourglassf are 64×64.
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G.2. Network architectures

In Section 3 of the main paper, we describe the key architectures of our model and leave some details unspecified. This

section describes the detailed neural network architectures.

Figure 40 summarizes the hourglass-like architectures that we used for images of different sizes. The image padding

is explaned and specified in Appendix G.1. In general, an hourglass architecture has mirrored encoding (high-resolution

to low-resolution) and decoding (low-resolution and high-resolution) architectures. Skip-links, made up of convolutional

layers, create shortcuts from the encoding feature maps and decoding feature maps of the same resolution. The responses of

the skip-links are fused with the main stream decoding responses using element-wise addition. We use the max-pooling to

reduce the feature map size for encoding, and we upsample feature maps by the nearest interpolation for decoding. For each

linear layer, a batch normalization layer is followed, and LeakyReLU [34] is the default activation function.

Based on the neural network architectures in Figure 40, a convolutional layer of 1×1 kernels calculates the raw detection

score map of K + 1 channels (recall that K is the number of landmarks). For image output, the last convolutional layer’s

responses (∈ R) are mapped to (0, 1) with a sigmoid function for the reconstructed color intensity and to (0,+∞) by

log(1 + 2 exp(z))/2 for the pixel-wise standard deviation, respectively.

G.3. Training strategy

We use Adam with an initial learning rate of 0.001 to optimize the neural network parameters. We set the training batch

size to 16 or 327 for 80×80 and 60×60 images and 8 for 128×128 images. The learning rate starts from 10−3 and decreases

to 10−4 and 10−5 later. For color images, we do random brightness and contrast jittering.

For batch normalization, the global mean and variance are computed using a random subset of the training set when the

neural network training is done. Note that using the running average during training for the global mean and variance can

hurt the performance.

To implement the equivariance constraint in (8), we use random TPS transformation to obtain warped input images (paired

with the original images) in each training iteration. Taking the normalized image height and width as 1, the random transfor-

mation parameters are:

• Global affine component. Uniform random translation in ±0.15; Gaussian random rotation with the standard deviation

of 10◦; Gaussian random scaling in the base-2 logarithm scale with the standard deviation of 1.25.

• Local TPS. Gaussian random translation with the standard deviation of 0.1 (regarding the regular-grid control points)

or 0.05 (regarding the landmark control points).

For the reconstruction loss weight λrecon in (15), we find it helpful to start with a small value and increase it to its final

value at a later stage. At the early training stage, the discovered landmarks change significantly for each iteration, and

the latent descriptor of landmarks inputted to the decoder also varies a lot. The model parameters of the decoder and the

gradients from it can change too drastically if the reconstruction loss weights is large, which would harm the training of both

the landmark detector and the landmark-based image decoder. As a particular training strategy, we increase the value of

λrecon by ×10 twice during the training. Table 7 in Appendix G.4 summarizes the detailed hyper-parameters.

For the L2 reconstruction loss Lrecon, we scale the image pixel values to [0, 1]. The loss is explicitly defined as the negative

logarithm likelihood (NLL) to draw the input image I from the Gaussian distribution centered at the reconstructed image Ĩ

the with a fix variation σcolor = 0.05. More specifically,

Lrecon =
1

σ2
color

‖I− Ĩ‖
2

F + ln (2πσ2
color). (17)

The value of the loss weight λrecon is based on this definition.

7There is no significant difference in the performance when using either 16 or 32 as the training batch size.
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G.4. Hyper­parameters

Table 7 summarizes the dataset-specific hyper-parameters. Note that our model is not sensitive to minor changes of the

hyper-parameters, but adjusting the hyper-parameters for each dataset can improve the performance slightly.

Dataset
# land-

mark

1st LR

decay iter.

2nd LR

decay iter.

Initial

λrecon

1st λrecon

increase

iter.

2ndλrecon

increase

iter.

λconc σsep λsep λeqv C

CelebA 10 100K 200K 0.01 100K 200K 100 0.06 16 104 8

CelebA 30 100K 200K 0.1 100K 200K 100 0.04 10 104 8

AFLW 10 100K 200K 0.1 100K 200K 100 0.06 16 104 8

AFLW 30 100K 200K 0.0001 100K 200K 100 0.04 10 104 8

Cat 10 100K 200K 0.0001 100K 200K 100 0.08 20 104 8

Cat 20 100K 200K 0.0001 100K 200K 100 0.05 10 104 8

Car 10 40K 80K 0.001 40K 50K 100 0.08 200 104 8

Car 24 40K 80K 0.001 40K 50K 100 0.05 200 104 8

Animal 10 20K 50K 0.001 40K 50K 100 0.08 20 104 2

Shoes 8 100K 20K 0.01 100K 200K 100 0.05 20 104 8

Human 16 100K 200K 0.1 100K 200K 100 0.06 20 104 8

Table 7: The hyper-parameters for our models on different datasets. When computing loss Lconc, Lsep, Leqv, the coordinates is first

normalized with respect to the image edge length (i.e., the square root of the image area). All hyper-parameters (including, λconc,

σseq, λseq, λeqv) are set according the normalized landmark coordinates.

G.5. Details about face generations using unsupervised landmarks

Figure 11 in the main paper shows results of generating facial images conditioned on our discovered landmarks. In this

experiment, we fix our landmark discovery module and use it to detect landmarks on training images. For the decoding

module, we take the detected landmarks as a given input condition and map an isotropic Gaussian random variable to the

latent part of the image representation. Inspired by [46], we first use deconvolutional layers to get a feature map from the

random variable and use convolutional layers to get another map of the same size from the reconstructed detection confidence

map. We use element-wise multiplication and channel-wise concatenation to fuse the two into one feature map as the input

of the decoding neural network. Thus, the way of calculating the input feature map of the decoding module is not the same

as our landmark discovery model.

We use the boundary equilibrium GAN (BEGAN) [3] framework to design the discriminator, which encourages the de-

coder to generate realistic images. More concretely, an autoencoder is trained as the energy function to distinguish the real

and generated images. To make sure the generated images are consistent with the landmark condition, we first use our

landmark discovery module to detect landmarks on them. We then take the L1 distance between them and those from the

corresponding real images (i.e., input training images for getting the landmarks) as an extra training loss for the decoding

module.

This experiment is mainly to show that our discovered landmark is accurate and meaningful enough for controllable image

generation.
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