Dynamically Grown Generative Adversarial Networks

Lanlan Liu*, ! Yuting Zhang, > Jia Deng, *> Stefano Soatto >

! University of Michigan, Ann Arbor 2 Princeton University 3 Amazon Web Services

llanlan@umich.edu jiadeng @cs.princeton.edu

Abstract

Recent work introduced progressive network growing as a
promising way to ease the training for large GANS, but the
model design and architecture-growing strategy still remain
under-explored and needs manual design for different image
data. In this paper, we propose a method to dynamically grow
a GAN during training, optimizing the network architecture
and its parameters together with automation. The method em-
beds architecture search techniques as an interleaving step
with gradient-based training to periodically seek the opti-
mal architecture-growing strategy for the generator and dis-
criminator. It enjoys the benefits of both eased training be-
cause of progressive growing and improved performance be-
cause of broader architecture design space. Experimental re-
sults demonstrate new state-of-the-art of image generation.
Observations in the search procedure also provide construc-
tive insights into the GAN model design such as generator-
discriminator balance and convolutional layer choices.

Introduction

Generative Adversarial Networks (GANs) (Goodfellow
et al. 2014) have recently advanced in the literature of im-
age generation and editing. However, training a GAN re-
mains difficult for new data domains, especially for large-
scale GANs. One of the main issues is that training a GAN
can be unstable and difficult (Arjovsky, Chintala, and Bot-
tou 2017; Heusel et al. 2017)—as a two-player game, gener-
ator or discriminator could easily dominate the training and
cause the training signal to vanish or explode. With bigger
networks and higher resolutions, this issue gets worse with
more complex network parameter space.

Recent work introduced the progressive growing of
GANs (Karras et al. 2018) to ease the training for large
GAN:G. It starts with generating low-resolution images with a
small network and then progressively adds new layers to the
network to generate higher-resolution images. As demon-
strated by (Karras et al. 2018), it makes training large GANs
easier and improve the quality of generated images in high
resolutions.

However, in this progressive-growing process for archi-
tectures, the layers and growing schedules are predefined by

“Work conducted during internship at Amazon.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

{yutingzh, soattos} @amazon.com

researchers. There is a large space that still remains under-
explored. For example, are symmetric generator and dis-
criminator optimal? Are the layer choices optimal? In this
paper, we propose an automatic method to explore this rich
architecture space by dynamically growing a GAN during
training, optimizing the growing strategy together with its
network parameters.

Our Dynamically Grown GAN (DGGAN) method em-
beds architecture search techniques as an interleaving step
with gradient-based training to periodically seek the optimal
regarding the balancing between the generator and discrimi-
nator, choice of network units, and growing strategy. That is,
we alternate between optimizing the generator and discrim-
inator architecture and training the new architecture. More
specifically, when optimizing the generator and discrimina-
tor architecture, our method grows layer(s) from previous
architecture, with where to grow (generator or discrimina-
tor or both) and how to grow in the automatic framework.
The new architecture is then trained with weight inheritance
from the previous architecture.

Our method enjoys the benefits of both easing the op-
timization by progressively growing the architecture and
exploring more architecture design space by architecture
search. This combination is beneficial to discover well-
performing GANSs, especially with high-resolution images.
Compared to progressively growing GANs (Karras et al.
2018) with a manually-designed growing strategy, our dy-
namic growing method explores much richer architecture
space and growing strategies. More specifically, our method
allows the generator and the discriminator to grow alone
or together dynamically in the process, creating diverse
and unconventional balance between them. Compared to
prior work AutoGAN (Gong et al. 2019) and AGAN (Wang
and Huan 2019), which combine architecture search with
GANSs, we complement progressive growing with architec-
ture search to eases the training of GANs with complicated
architectures and high resolutions. This novel perspective
enables our method to work on higher resolutions while
these prior works only worked on at most 48 x48.

Our experiments show that we achieve the new state-of-
the-art on CIFAR-10 and the best performance among non
part-based GANs on LSUN for image generation. With fur-
ther analysis of the thousands of models in our search proce-
dure, we observe several practical conclusions on the GAN

model design such as generator-discriminator balance and
convolutional layer choices.

Our main contributions are: 1) We propose a method
to dynamically grow GANSs, easing the training of GANs
as well as exploring unconventional network architecture
space; 2) We present the first automatic GAN that works
on high-resolution images; 3) We provide constructive con-
clusions of generator and discriminator design choices using
thousands of searched models; 4) We achieve new state-of-
the-art image generation performance.

Related Work

Improving GANs Since the proposal of GANs (Good-
fellow et al. 2014), there have been several lines of work
to improve GANSs, including improving loss functions (Ar-
jovsky, Chintala, and Bottou 2017; Deshpande, Zhang, and
Schwing 2018; Berthelot, Schumm, and Metz 2017), reg-
ularization techniques (Miyato et al. 2018; Gulrajani et al.
2017; Zhang et al. 2020), generation strategy (Lin et al.
2019), and architecture designs (Li et al. 2019; Nguyen et al.
2017; Zhang et al. 2019; Radford, Metz, and Chintala 2016;
Karras et al. 2018). Improved loss functions and regulariza-
tion techniques are orthogonal to our work. Our work be-
longs to the architecture design line of work. While these
works improve GAN training, they use manually-designed
architectures.

Progressive GAN (ProgGAN) (Karras et al. 2018) shows
that progressively growing and training GAN from a smaller
scale eases the training difficulties and improves the genera-
tion quality. Motivated by this observation, the search strat-
egy in our DGGAN is in a progressive way. Despite this
inspiration, our method is different from ProgGAN because
ProgGAN is pre-designed and always grows both generator
and discriminator symmetrically and simultaneously. Ours
automatically searches how and what to grow, and genera-
tor and discriminator may not be symmetric. This difference
allows us to explore a much richer architecture space than
ProgGAN, resulting in better performance.

Architecture Search with GANs AGAN (Wang and
Huan 2019) and AutoGAN (Gong et al. 2019) explore ar-
chitecture search with GANs, which are closely related to
our work. AGAN (Wang and Huan 2019) learns one RNN
controller with the REINFORCE algorithm to search for the
architecture of both generator and discriminator simultane-
ously. Our DGGAN differs from AGAN because our dy-
namic growing strategy is more flexible: it allows to grow
G alone, or D alone, or both. Moreover, our method alter-
nate between growing an architecture and training its weight
while AGAN does not have such a training strategy.
AutoGAN (Gong et al. 2019) uses RNN controllers with
REINFORCE to search for the generator architecture only.
Their discriminator is not searched but constructed with a
predefined strategy. It is stated that when searching for both
they observe “such two-way NAS will further deteriorate
the original unstable GAN training, leading to highly os-
cillating training curves and often failure of convergence.”
Our DGGAN, however, deals with the difficulties in train-
ing unstable GANs and successfully searches for both gen-

erator and discriminator. Beyond the methodology differ-
ence, both prior works demonstrate image generation with
at most 48 x48 resolution. Our method, however, supports
256 x256.

Neural Architecture Search Neural Architecture Search
(NAS) (Zoph et al. 2018; Zoph and Le 2017) aims to re-
duce the human intervention by automating network design.
Researchers use Reinforcement Learning (Zoph et al. 2018;
Zoph and Le 2017; Pham et al. 2018), Evolutionary Algo-
rithm (Real et al. 2019), gradient based (Luo et al. 2018;
Liu, Simonyan, and Yang 2019), Random Search (Xie et al.
2019) and progressive search (Liu et al. 2018) for image
classification task. In addition, there are also recent works
applying NAS on segmentation (Liu et al. 2019; Chen et al.
2018), machine translation (So, Le, and Liang 2019), and
transfer learning (Wong et al. 2018). Our method differs
from them because 1) we utilize the fact that GAN has two
competing components, which does not exist in the tasks
above, by allowing each component to grow alone or to-
gether; 2) we embed progressive training into architecture
search, which is important to models with unstable training,
such as GANs. As shown in AutoGAN (Gong et al. 2019),
a naive two-way NAS will deteriorate the original unstable
GAN training and sometimes lead to failure of convergence.

One related work in this scope is progressive NAS (Liu
et al. 2018). It does progressive search inside a cell architec-
ture and stacks the found cell to construct the full network
for evaluation. Despite the similarity of wording choice,
their progressive search is layer by layer inside a cell but
our progressive growing involves growing from lower res-
olution to higher resolution. Also, we directly construct the
whole network(s) while (Liu et al. 2018) constructs a cell ar-
chitecture and stack it for final architecture. In addition, as a
NAS method, it also has the differences described in the last
paragraph.

Dynamically Grown GAN
Dynamic Growing Overview

DGGAN embeds architecture search techniques with
gradient-based training to periodically seek the optimal re-
garding network architecture and network weights. We alter-
nate between the growing and training steps to grow a small-
scale GAN to the full-scale GAN dynamically and automat-
ically, as shown in Fig. 1. We use the Wasserstein distance
loss with gradient penalty (Arjovsky, Chintala, and Bottou
2017; Gulrajani et al. 2017).

The growing at each step is dynamic instead of static as
in the conventional progressive GAN method. At the grow-
ing step, our method determines which actions in the search
space to take, i.e., where to grow what kind of layers as
in Fig. 1(top). In contrast, in the conventional progressive
GAN method, the growing schedule is fixed and manually-
designed. Given existing architectures, noted as parent archi-
tectures, we expand parent architectures to new architectures
by the growing actions (e.g. add a layer with 256 filters and
the filter size of 3). We note the new architectures as child
architectures.

v

[Grow G with conv(7, 512) |

Grow D with conv(3, 128) } |:||:||:||:|

7777777

o W o
o b b
e preved oo TR SmuoLn ,,,,,,,,

Grow

(Y

NV pauiei] |euld

\ \J
1Resolution
Train Grow Train Grow Train

Figure 1: Overview of the Dynamically Grown GAN. Bottom: The dynamic growing process. We alternate between growing
the architecture and training the weights of the new architectures. Each growing step chooses among actions including growing
the generator (G) with a certain convolution layer, or growing discriminator (D) with a certain convolution layer, or growing
both G and D to a higher resolution. In each training step, the new architectures inherit the weights from the old architectures.

Top: Examples of growing steps.

At the training step, the child architectures are trained
with weight inheritance from the parent architectures. More
specifically, a new child architecture contains all layers in
the parent architecture as well as the new layer(s) grown.
We inherit the weights of the common layers from its parent
architecture by initializing the weights of the child archi-
tecture with the trained weights of the parent architecture.
The newly grown layer(s) that only exist in child candidates
are initialized randomly. This weight inheritance method
provides two benefits: it eases the optimization difficulties
for the child architectures. It also reduces the training time
needed for each new candidate.

Generator and Discriminator Base Architecture Fol-
lowing ProgGAN (Karras et al. 2018), the base architectures
of generator and discriminator are two small scale networks
that operate on a low resolution with dy x d pixels. The gen-
erator takes a randomly-sampled vector as input and outputs
an image with resolution dy X dy. The discriminator takes
an image with resolution dy x dy and outputs a single score.
More specifically in our experiments, CIFAR-10 takes ran-
dom vectors with size 128 and others take random vectors

with size 512. dy is 8 in our experiments. When growing a
generator, we grow near the end of the network before the
last convolution layer. When growing a discriminator, we
grow near the beginning of the network after the first con-
volution layer. Growing heads are indicated as the orange
layers in Fig. 1(top). The structures of the base architec-
tures thus can be maintained during growing. This choice
is following prior work (Karras et al. 2018) as in their study,
growing in other locations does not lead to better perfor-
mance. Note that our method allows us to grow the genera-
tor or discriminator alone or both. That is, they do not need
to be grown symmetrically.

Action Search Space The action search space includes:
1) growing the generator with a convolution layer with filter
sizes from {3, 7} and number of filters from {32, 64, 128,
256, 512, 1024}, with padding so that the resolution does
not change; 2) growing the discriminator with a convolu-
tion layer with filter sizes from {3, 7} and number of filters
from {32, 64, 128, 256, 512, 1024}, with padding so that the
resolution does not change; 3) growing both generator and
discriminator by adding a fade-in block (Karras et al. 2018)

to double the resolution. The fade-in block, introduced in
ProgGAN (Karras et al. 2018), can smoothly transit the net-
work from lower resolution to higher resolution and avoid
sudden dramatic changes in well-trained low-resolution net-
works. Sudden dramatic changes without the fade-in block
may cause the training to diverge. More specifically, to tran-
sit from lower resolution to higher resolution, the fade-in
block uses a weighted sum of both the lower resolution path
and the higher resolution path. During training, we gradually
reduce the weight on the lower resolution path from 1 to 0
and increases the weight of the higher resolution path from
0 to 1, so that it transits softly.

This search space allows us to grow either or both of the
generator and discriminator at each step. We thus can ex-
plore various architecture combinations of the generator and
discriminator without symmetric constraint while ensuring
the image resolution is consistent between both. An exam-
ple of such asymmetric GAN is shown in Fig. 1(bottom).

Search Algorithm

In the growing steps discussed above, the number of poten-
tial architecture candidates will grow exponentially with re-
spect to the search depth. Due to resource limits, it is infea-
sible to evaluate all of the candidates. We thus use random
sampling and greedy pruning to reduce the number of candi-
dates. More specifically, at each growing step, we reduce the
number of parent candidates by greedy pruning and reduce
the number of actions by random sampling. In particular, we
keep the top K parent candidates at each step and expand
to child candidates only with these parents, similar to beam
search. With the 7" actions, we randomly sample actions
with a probability p. The details are in Algorithm 1. This
pruning algorithm reduces the number of candidates from
exponential to linear, with respect to search depth. Larger p
or K leads to a better exploration of the search space but
also greater computational cost. We will further discuss the
computational efficiency in Sec. Analysis.

Experimental Results

We evaluate DGGAN against manually designed ProgGAN
and other recent GAN models on CIFAR-10 and LSUN. We
use the most popular PyTorch implementation (Git 2019) of

Algorithm 1: Top-K Greedy Pruning Algorithm
A = {actions};
P = {initial candidates};
Train and evaluate each candidate in P;
while not reaching maximum number of layers do

C={h
for each ()eP x Ado

| Add P —i— A] into C with probability p;
end

Train and evaluate each candidate in C;
C’ = keep top-K candidates of C’;
P=C;

end

ProgGAN to obtain comprehensive ProgGAN results and to
implement our DGGAN. Ablative analysis is on CIFAR-10.

Datasets and Evaluation Metrics

CIFAR-10 (Krizhevsky 2009) contains 50k 32x32 training
images. It is a small but effective testbed for GANSs, in-
cluding recent automatic GANs (Gong et al. 2019; Wang
and Huan 2019). LSUN (Yu et al. 2015) has over a mil-
lion 256 X256 bedroom images for training. We use Frechet
Inception Distance (FID) (Heusel et al. 2017) as the main
evaluation metric as well as the feedback criterion. FID is a
widely-used evaluation metric for the image generation task.
As shown in empirical studies (Xu et al. 2018; Heusel et al.
2017), FID evaluates the generation quality more effectively
compared to other metrics such as Inception Score (Sali-
mans et al. 2016). It is also one of the most commonly used
evaluation metric in recent works. Our algorithm however is
not tied to the specific evaluation criterion. That is, if there
is a better evaluation metric, FID can be substituted with the
new evaluation metric.

CIFAR-10

Implementation Details We train initial candidates for
100k iterations and train each new candidate with 100k it-
erations after weight inheritance. We gradually increase the
resolution from dy = 8 to 32. After reaching the final res-
olution, following (Karras et al. 2018), we further train the
fixed architecture longer to achieve convergence. We follow
the same training schedule as ProgGAN.

Comparison with ProgGAN at Multiple Resolutions We
reduce the FID from 18.33 to 12.10 at 32x32, from 11.68
to 6.40 at 16x 16, and from 4.02 to 1.96 at 8 x8. The im-
provements compared to ProgGAN are 51%, 45%, and 34%
respectively. FID at each resolution is not comparable.
Comparison with Automatic GANs The bottom rows in
Table 1 are automatic GANs (Wang and Huan 2019; Gong
et al. 2019). Our DGGAN outperforms both and achieves
the state-of-the-art on FID.

Comparison with State-of-the-art The prior state-of-the-
art methods in the top rows in Table 1 are manually-designed
GANSs that may have improved loss functions (Wang, Sun,
and Halgamuge 2019; Tran, Bui, and Cheung 2018) or reg-
ularization (Zhang et al. 2020). These sophisticated losses
and techniques show superiority over the basic WGAN-GP
loss. Trained with only basic WGAN-GP loss, our method
still outperforms all of them on FID.

Inception Score and Visualization Even though it is
shown (Xu et al. 2018; Heusel et al. 2017) that Inception
Score fails to capture the distance between generated im-
ages and real images, we still evaluate with Inception Score
for a thorough comparison with prior works on CIFAR-10.
We show that with the large variety on FID, the Inception
Scores are similar across well-performing GANs. We show
randomly selected generated examples from our DGGAN,
ProgGAN, and AutoGAN as in Fig. 2(right).

LSUN

We follow the same strategy as in CIFAR-10 except higher
resolutions. We also report Sliced Wasserstein Distance

Table 1: Quantitative evaluation on CIFAR-10. Top: manually-designed GANs. Bottom: automatic GANs. Lower FID and

higher Inception Score indicate better generation quality.

Model

FID Inception Score

CR-GAN (Zhang et al. 2020)

14.56 -

Improving MMD-GAN (Wang, Sun, and Halgamuge 2019) 16.21 8.29

DistGAN (Tran, Bui, and Cheung 2018)
ProgGAN (Karras et al. 2018)
WGAN-GP (Gulrajani et al. 2017)

DCGAN (Radford, Metz, and Chintala 2016)

17.61 -

18.33! 8.80 £ 0.05
29.3 7.86 + 0.07
37.7 6.64 + 0.14

AutoGAN (Gong et al. 2019)
AGAN (Wang and Huan 2019)
Ours

12.42 8.55+£0.10
23.80 8.82+0.09
12.10 8.64 £ 0.06

ProgGAN

DGGAN

AutoGAN ProgGAN

DGGAN

Figure 2: Examples of generated LSUN images (left) and CIFAR-10 images (right)z.

(SWD) (Karras et al. 2018) to compare with some prior
works.

Comparison with ProgGAN at Multiple Resolutions We
show significant improvement against ProgGAN baseline at
each resolution—by 16%, 10%, 32%, 58%, 46%, 24% re-
spectively, in Table 2.

Comparison with Automatic GANs We are the first auto-
matic GAN paper demonstrated with this high-resolution of
256 x 256. Prior automatic GAN work uses at most 48 x 48
images, potentially because of the instability of GANs, as
discussed in (Gong et al. 2019). We however train the archi-
tecture found by AutoGAN for 32 x 32 for a comparison. It
obtains a FID of 19.74 on 32 x 32 and 19.61 on 64 x 64.
For higher resolutions, the training fails with large patches
of artifacts.

Comparison with State-of-the-art Recent works (Wang,
Sun, and Halgamuge 2019; Heusel et al. 2017) on manually-
designed GANSs innovate on loss function and training strat-

egy. These methods show superiority over the basic WGAN-
GP loss. With the disadvantage of loss, our method achieves
the best FID on both resolutions among these methods as in
Table 3. Different from the above models that generates the
full images, COCO-GAN (Lin et al. 2019) is a part-based
method. It is trained with image parts instead of the full im-
age, conditioned on the spatial coordinates. It achieves the
state-of-the-art, better than other non-part based methods in-
cluding ours. Combining with part-based method can be our
future work with dynamic growing.

Visualization We show examples of generated bedroom
images in Fig. 2(left). Our example images are randomly
generated. We see that our generated images are diverse,
sharp and have good layouts most of the time. Compared

'All numbers are from original papers except that this FID is
obtained by the PyTorch implementation (Git 2019).

2ProgGAN on LSUN and AutoGAN on CIFAR-10 are obtained
from their papers.

Table 2: Quantitative evaluation on LSUN, compared with ProgGAN at each scale.

Resolution 8x8 16x16 32x32 64x64 128x128 256x256
ProgGAN 29.07 23.75 27.9 19.67 29.35 10.76
Ours 24.29 21.49 19.01 8.25 13.29 8.22
Improvement 16% 10% 32% 58% 46% 24%

Table 3: Quantitative evaluation on LSUN. SWD averages over multiple feature scales from 256 to 16. Lower FID and smaller
SWD indicate better generation quality. COCO-GAN is a part-based GAN but all others are on part-based GANs that learns to

generate the whole images.

. SWD x 103
Model Resolution FID 256 128 64 3 16 Avg
DCGAN (Radford, Metz, and Chintala 2016) 64 x 64 70.4 - - - - - -
WGAN-GP (Gulrajani et al. 2017) 64 x64 20.5 - - - - - -
Improving MMD-GAN (Wang, Sun, and Halgamuge 2019) 64 <64 12.52 - - - - - -
TTUR (Heusel et al. 2017) 64x64 9.5 - - - - - -
Ours 64 x64 8.25 - - - - - -
ProgGAN (reported in (Karras et al. 2018)) 256x256 834 272 245 234 290 9.08 3.90
ProgGAN (Pytorch (Git 2019)) 256x256 10.76 3.74 3.78 3.53 4.04 1.58 3.33
Ours 256x256 822 3.01 215 3.03 456 140 2.83
COCO-GAN (Lin et al. 2019) (Part-based) 256x256 5.99 - - - - - -

to ProgGAN, it also shows better details such as wall dec-
orations and furniture other than beds. However, we also
see failure cases such as non-straight lines and occasionally
completely-failed images.

Analysis

We conduct a thorough analysis of thousands of models pro-
duced by our search. Several practical conclusions and dis-
cussions are provided. More analysis can be found in the
supplementary material.

How does the capacity of the generator (G) and the dis-
criminator (D) affect training? We use the number of pa-
rameters in G over the number of parameters in D, noted as
G2D #parameters ratio, as the G-D capacity indicator and
use FID normalized by the per-scale ProgGAN baseline as
the generation quality indicator. We show how the candi-
dates perform with the G-D ratio in Fig. 3(left). The ex-
tremely large normalized FIDs are the cases where the train-
ing diverges, which are rare with our algorithm. From the
zoomed-in figure in Fig. 3(left), we observe that G and D
do not have to be symmetric to gain good performance. To
have a better performance than the baseline, i.e. normalized
FID<1, the G2D ratio can be in a wide range [1/64, 64].
This observation suggests that the long-existing strategy
of designing symmetric GANs may miss many potentially
good architecture candidates. Our DGGAN fills in this gap
and explores those candidates. To further analyze the grow-
ing process, we visualize the best performing GAN’s grow-
ing route as red arrows in the plot.

How does each action affect training? We investigate how

each action, i.e. how to grow layers, affects training. We
compute the improvement of normalized FID over parent
architectures after each action to explore how each action
affects training, as in Fig. 3(middle). The normalized FID
improvement is calculated by normalized FID of a child can-
didate over normalized FID of its parent candidate. We com-
pute the percentage of candidates with positive improvement
after each action, and the mean and variance of the normal-
ized FID improvement of all child candidates generated by
performing an action as shown in Fig. 3(middle). We ob-
serve several interesting tendencies. In discriminators, larger
filter size performs much worse than smaller filter size while
different filter sizes perform similarly in generators. It sug-
gests that when designing a discriminator, a small filter size
should be adopted; when designing a generator, different fil-
ter sizes are worth to explore. We also observe that in both
discriminator and generator, more filters do not always lead
to better performance. Generator is especially more sensi-
tive to over-complicated convolution layers.

How does greedy pruning affect searching? Our greedy
pruning method prunes most of the sub-optimal parent can-
didates and only expand child candidates from the top-
performing parent candidates. It accelerates the search sig-
nificantly, from exponential to linear. However, this greedy
pruning method bares the risk to miss a good search path:
a sub-optimal parent candidate that is pruned may be able
to develop well-performing children models in the future.
To quantify such risks, we show how likely the sub-optimal
parent candidates could generate good children. We com-
pute the ratio of good children over all children for each

Capacity balance vesus score

Percentage with improvement

©
2 - D: o > D
vea | 116 14 1 i 1 P W62 0263%62763 250 6l 6l 6l

G2D #parameters ratio

3, 6% 12 190 (N1 3l 6% 12 050 Wk b b 6h 1% 90 3 b 3L 6% g 60 (b o
LR B R B R S R P SRR SRR

of good child candidates

rcentage

Pe

os 06 07 o8 05 1
‘Thresholds for good candidates in terms of normalized FID

B
253

Capacity balance vesus score

o
o

[
P 0
PO

°
°
—_—
——
[e—
—

Improvement over parent

—0.6 1]
—0.8 1

Simulated final FID

& g9 IS S
Qqﬁcﬁ\?:ﬁ?é?g 02 N 4 B4 O

64 116 va 1 4 16 64
G2D #parameters ratio

() >
200, 6% 31 €505 28 ESEY
62" 623> 6176l 61 6l 6l g SICEDER

3L, 0% 12 490 Vb 1 4 3, 6% 1% 490 o ot
2252702253 01 0151751 %51 2708

Simulated final FID

I T R R U I
K

Figure 3: Left: G-to-D number of parameters ratio and normalized FID for candidates on CIFAR-10. The top figure includes
all the candidates and the bottom figure includes the candidates with normalized FID smaller than 1.2. The red arrows show the
growing process of the best performing GAN. Middle: How each action affects training. The top figure shows the percentage of
candidates with positive improvement over parent after each action. The bottom figure shows the average and standard deviation
of the improvement. Right: Ablated simulations. The top figure studies how likely good/sub-optimal parent candidates result
in good child candidates with different normalized FID thresholds. The bottom two are simulation with hyper-parameters p and

K.

good or sub-optimal parent candidate using 2K+ models we
trained during an extensive search process. The good candi-
dates given a threshold are defined as candidates with nor-
malized FID to be above the threshold and the sub-optimal
ones are below the threshold. Each threshold holds for both
parent candidates and child candidates. Note that the sub-
optimal parent candidates used here are not too bad because
the worst candidates have been pruned out during the search.
We vary the normalized FID threshold in the range [0.5, 1]
and show the results in Fig. 3(right). It shows that good par-
ent candidates are much more likely to have good child can-
didates, regardless of the threshold. This indicates that prun-
ing the sub-optimal parent candidates does not introduce
much risk of missing good growing routes in practice.

Discussion on Efficiency We use hyper-parameters K (top-
K) and p (random sampling ratio) to budget the computation
cost. Larger K or p leads to a better exploration of the search
space but also greater cost. In our experiments, we choose
K = 20 and p = 0.4 to maximally use our computation
budget to explore a larger space and more candidates to an-
alyze the behavior of GAN’s dynamic growing. The result-
ing computational cost is 580 GPU days for 2k+ CIFAR-10
models and 1720 GPU days for 1k+ LSUN models.

For the optimal time cost to achieve good performance,
K can be as small as 8 to achieve the same performance,
and p can be as small as 0.2, as shown in our simulation
in Fig. 3(right). We simulate to use smaller K or p in our
algorithm: if a simulated candidate is not among the candi-

dates that we have reached during our real search, we ig-
nore it. This simulation explores fewer candidates than a
real run with different K and p, which means that the ac-
tual computation cost can be less to achieve the same per-
formance. Note that our main contribution is to propose the
dynamic growing method that bridges the gap between high-
resolution GAN and architecture search. We aim for high
generation quality instead of good search efficiency. Upon
our simple strategy such as random sampling and pruning,
further work such as using learning-based methods (Liu, Si-
monyan, and Yang 2019; Pham et al. 2018) can be used to
improve efficiency.

Conclusion and Limitations

We propose DGGAN, growing the network architecture and
optimizing its parameters together automatically. Experi-
mental results on two datasets demonstrate competitive per-
formance in image generation. In addition, we are the first
automatic GAN method that works with high resolution im-
ages. With a thorough analysis, we provide several con-
structive insights on GAN architecture designs. We also ob-
serve several limitations as well as future directions: uti-
lizing the newest loss functions and regularization methods
rather than WGAN-GP; better evaluation criterion; more ef-
ficient search algorithms.

References

Arjovsky, M.; Chintala, S.; and Bottou, L. 2017. Wasserstein
generative adversarial networks. In ICML.

Berthelot, D.; Schumm, T.; and Metz, L. 2017. BEGAN:
Boundary Equilibrium Generative Adversarial Networks.
arXiv preprint arXiv:1703.10717 .

Chen, L.-C.; Collins, M.; Zhu, Y.; Papandreou, G.; Zoph, B.;
Schroff, F.; Adam, H.; and Shlens, J. 2018. Searching for ef-
ficient multi-scale architectures for dense image prediction.
In NeurIPS.

Deshpande, 1.; Zhang, Z.; and Schwing, A. G. 2018. Gen-

erative modeling using the sliced wasserstein distance. In
CVPR.

Git, F. R. 2019. PyTorch Progressive GAN Implementation.
https://github.com/facebookresearch/pytorch_ GAN_zoo.

Gong, X.; Chang, S.; Jiang, Y.; and Wang, Z. 2019. Auto-
GAN: Neural Architecture Search for Generative Adversar-
ial Networks. In ICCV.

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. In NeurIPS.

Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; and

Courville, A. C. 2017. Improved training of Wasserstein
GAN:Ss. In NeurIPS.

Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; and
Hochreiter, S. 2017. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. In NeurIPS.

Karras, T.; Aila, T.; Laine, S.; and Lehtinen, J. 2018. Pro-

gressive Growing of GANs for Improved Quality, Stability,
and Variation. In ICLR.

Krizhevsky, A. 2009. Learning Multiple Layers of Features
from Tiny Images .

Li, D.; Chen, D.; Jin, B.; Shi, L.; Goh, J.; and Ng, S.-K.
2019. MAD-GAN: Multivariate anomaly detection for time
series data with generative adversarial networks. In ICANN.
Lin, C. H.; Chang, C.-C.; Chen, Y.-S.; Juan, D.-C.; Wei, W.;
and Chen, H.-T. 2019. COCO-GAN: generation by parts via
conditional coordinating. In ICCV.

Liu, C.; Chen, L.-C.; Schroff, F.; Adam, H.; Hua, W.; Yuille,
A. L.; and Fei-Fei, L. 2019. Auto-deeplab: Hierarchical neu-

ral architecture search for semantic image segmentation. In
CVPR.

Liu, C.; Zoph, B.; Neumann, M.; Shlens, J.; Hua, W.; Li, L.-
J.; Fei-Fei, L.; Yuille, A.; Huang, J.; and Murphy, K. 2018.
Progressive neural architecture search. In ECCV.

Liu, H.; Simonyan, K.; and Yang, Y. 2019. DARTS: Differ-
entiable Architecture Search. In /CLR.

Luo, R.; Tian, E; Qin, T.; Chen, E.; and Liu, T.-Y. 2018.
Neural architecture optimization. In NeurIPS.

Miyato, T.; Kataoka, T.; Koyama, M.; and Yoshida, Y.

2018. Spectral Normalization for Generative Adversarial
Networks. In ICLR.

Nguyen, T.; Le, T.; Vu, H.; and Phung, D. 2017. Dual dis-
criminator generative adversarial nets. In NeurIPS.

Pham, H.; Guan, M.; Zoph, B.; Le, Q.; and Dean, J. 2018.
Efficient Neural Architecture Search via Parameter Sharing.
In ICML.

Radford, A.; Metz, L.; and Chintala, S. 2016. Unsupervised
Representation Learning with Deep Convolutional Genera-
tive Adversarial Networks. In ICLR.

Real, E.; Aggarwal, A.; Huang, Y.; and Le, Q. V. 2019. Reg-
ularized evolution for image classifier architecture search. In
AAAL

Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Rad-
ford, A.; and Chen, X. 2016. Improved techniques for train-
ing GANSs. In NeurlPS.

So, D.; Le, Q.; and Liang, C. 2019. The Evolved Trans-
former. In ICML.

Tran, N.-T.; Bui, T.-A.; and Cheung, N.-M. 2018. Dist-
GAN: An improved GAN using distance constraints. In
ECCV.

Wang, H.; and Huan, J. 2019. AGAN: Towards Automated
Design of Generative Adversarial Networks. arXiv preprint
arXiv:1906.11080 .

Wang, W.; Sun, Y.; and Halgamuge, S. 2019. Improving
MMD-GAN Training with Repulsive Loss Function. In
ICLR.

Wong, C.; Houlsby, N.; Lu, Y.; and Gesmundo, A. 2018.
Transfer learning with neural automl. In NeurIPS.

Xie, S.; Kirillov, A.; Girshick, R.; and He, K. 2019. Explor-
ing randomly wired neural networks for image recognition.
InICCV.

Xu, Q.; Huang, G.; Yuan, Y.; Guo, C.; Sun, Y.; Wu, E; and
Weinberger, K. 2018. An empirical study on evaluation
metrics of generative adversarial networks. arXiv preprint
arXiv:1806.07755 .

Yu, F; Seff, A.; Zhang, Y.; Song, S.; Funkhouser, T.; and
Xiao, J. 2015. Lsun: Construction of a large-scale image

dataset using deep learning with humans in the loop. arXiv
preprint arXiv:1506.03365 .

Zhang, H.; Goodfellow, I.; Metaxas, D.; and Odena, A.
2019. Self-Attention Generative Adversarial Networks. In
ICML.

Zhang, H.; Zhang, Z.; Odena, A.; and Lee, H. 2020. Consis-
tency Regularization for Generative Adversarial Networks.
In ICLR.

Zoph, B.; and Le, Q. 2017. Neural Architecture Search with
Reinforcement Learning. In /CLR.

Zoph, B.; Vasudevan, V.; Shlens, J.; and Le, Q. V.
2018. Learning transferable architectures for scalable im-
age recognition. In CVPR.

