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Supervised and unsupervised
deep learning

Deep representations can be obtained with
» Unsupervised learning: informative preservation

E.g. Stacked autoencoders (SAE), DBN, DBM
Generating data from feature representations (related to invertibility)

» Supervised learning: task-specific, not necessarily invertible
Unsupervised deep learning (DL) as pretraining for supervised DL

Prediction Ground truth
Learning from abundant

Learning from a small of
unlabeled data

—_> labeled data

Such pretraining became unnecessary given proper initialization and
and large amount of labeled data.

Classification
loss

To revisit the importance of unsupervised deep learning, people
incorporate unsupervised objectives into supervised training.

Autoencoders + Classifiers
» Ladder network: layer-wise skip links & pathway combinators
» Stacked “what-where” AE (SWWAE): unpooling switches
Promising results exist, but no evidence on both
» Large amount of labeled data
> Very deep networks

- for Large-scale Image Classification

Yuting Zhang, Kibok Lee, Honglak Lee

Augmenting classification networks
with decoding pathways
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Training procedure:

Step 1: Initialize the classification network with pretrained weights.
Step 2: Train (randomly initialized) “layerwise” decoding pathways.
Step 3: Train the top-down decoding pathways. (Inverting a network)
Step 4: Finetune the entire augmented network. (Improving a network)

Invertibility of large-scale classification networks

b. Inverting AlexNet
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c. Inverting 16-layer VGGNet

d. Observations & Hypotheses
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Take it as a helpful property and enhance it.

+ SWWAE-layerwise

Improving large-scale classification networks with decoding pathways
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. Sampling | Singlecrop | Convolution _
Errors Top-1 Top-5 Top-1 Top-5
Model Train Val. Train Val. Validation
VGGNet (baseline) 17.43 29.05 4.02 10.07 26.97 8.94

+ SAE-first 15.36 27.70 3.13 9.28 26.09 8.30

+ SAE-all 15.64 27.54 3.23 9.17 26.10 8.21

+ SAE-layerwise 16.20 27.60 3.42 9.19 26.06 8.17

+ SWWAE-first 15.10 27.60 3.08 9.23 25.87 8.14

+ SWWAE-all 15.67 27.39 3.24 9.06 25.79 8.13
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a. Experiments b. Conclusions
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A simple and effective way to incorporate unsupervised objectives
into large-scale classification network learning.

We improved the image classification performance of the 16-layer
VGGNet, a strong baseline model, by a noticeable margin.

Comparison among the variants of our models

» Pooling switch connections in SWWAE slightly benefit
classification performance.

» The decoding pathways mainly help the supervised objective
reach a better optimum.

» The layer-wise reconstruction loss can regularize the solution
to the joint objective.
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