
Humble Teachers Teach Better Students for Semi-Supervised Object Detection

Yihe Tang †,* Weifeng Chen ‡ Yijun Luo ‡ Yuting Zhang ‡

† Carnegie Mellon University, ‡ Amazon Web Services
tangacademic@gmail.com {weifec,yijunl,yutingzh}@amazon.com

Abstract

We propose a semi-supervised approach for contempo-
rary object detectors following the teacher-student dual
model framework. Our method 1 is featured with 1) the ex-
ponential moving averaging strategy to update the teacher
from the student online, 2) using plenty of region proposals
and soft pseudo-labels as the student’s training targets, and
3) a light-weighted detection-specific data ensemble for the
teacher to generate more reliable pseudo-labels. Compared
to the recent state-of-the-art – STAC, which uses hard la-
bels on sparsely selected hard pseudo samples, the teacher
in our model exposes richer information to the student with
soft-labels on many proposals. Our model achieves COCO-
style AP of 53.04% on VOC07 val set, 8.4% better than
STAC, when using VOC12 as unlabeled data. On MS-
COCO, it outperforms prior work when only a small per-
centage of data is taken as labeled. It also reaches 53.8%
AP on MS-COCO test-dev with 3.1% gain over the fully
supervised ResNet-152 Cascaded R-CNN, by tapping into
unlabeled data of a similar size to the labeled data.

1. Introduction
We address the problem of semi-supervised object de-

tection in this paper. Large curated datasets have driven the
recent progress in vision tasks like image classification, but
data remain scarce for object detection [14, 31, 26, 5, 22,
30]. MS-COCO [25], for example, offers 118,287 anno-
tated images, a relatively small fraction compared to over
14 million labeled images in ILSVRC [35]. Annotation ac-
quisition for detection is also much more costly.

Much effort has been made to solve the semi-supervised
learning problem for image classification, where an object
always exists and dominates the image. Not all progress for
image classification can benefit the detection task signifi-
cantly as the existence and locations of objects are unknown
without bounding box annotations. For example, a di-
rect application of classification-based pretraining [15, 7] is
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Figure 1: Comparing CSD [19], STAC [40], and our ap-
proach trained on full MS-COCO train 2017 with 1%, 2%,
5%, and 10% labeled over five runs using the splits in
Sec. 4.1. Our approach consistently outperforms others.

shown to be not so effective in our experiments (Sec. 4.4.2).
In this work, we propose a teacher-student approach

called Humble Teacher, which fits modern object detec-
tion frameworks better. The line of work on teacher-student
models has many variants, including self-training [37, 48,
32, 39, 47], the exponential moving average (EMA) based
mean teacher [44], and various ways to obtain pseudo-labels
and different views of data for consistency regularization
[49, 21, 36, 39] between the teacher and student. Recently,
Sohn et al. [40] proposed a Self-Training method based on
an Augmentation driven Consistency regularization (STAC)
via hard pseudo-labels. It adopted FixMatch [39], one of the
most successful recent methods for semi-supervised image
classification, directly to the classification head of the Faster
R-CNN [31] detector, yielding improved semi-supervised
detection results.

Our method further advances the semi-supervised ob-
ject detection for Faster-R-CNN-like models in a few as-
pects. Unlike self-training with a fixed teacher model, our
method updates the teacher model dynamically using EMA
updates for object detectors. The teacher and student model
use asymmetric data augmentation – stronger augmenta-
tions for the student [46, 3, 39, 40] – to process different
views of the same image [38]. In this framework, the key
to our model’s strong performance is to use soft pseudo-
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labels on a reasonable number of region proposals, striking
a good balance between covering the entire image and fo-
cusing more on learning useful foreground instances. It al-
lows the student to distill much richer information from the
teacher, compared to sparsely hard-selected high-confident
pseudo ground truths in the existing work [40]. The use
of soft-labels also keeps the model from over-fitting to the
teacher model’s potential missing and wrong predictions,
which can occur often when using a hard decision thresh-
old. In addition, we ensemble the teacher model under a
light-weighted detection-specific data augmentation to ob-
tain more reliable pseudo-labels. Through our study, we
find the wisdom from FixMatch and STAC – hard pseudo-
labels with sample selection – is not as effective. As our
method avoids hard training signals, looks at abundant box
instances, seeks for multi-teacher consensus, and uses run-
ning average weights as in the mean teacher, we name our
method a Humble Teacher.

The humble teacher significantly closes the gap between
semi-supervised learning and their fully supervised coun-
terpart on VOC. It significantly outperforms the state-of-
the-art STAC [40] on MS-COCO (Fig. 1) and VOC by
large margins. It also improves the ResNet-152 Cascade R-
CNN [5] supervised on MS-COCO train significantly with
the additional similar-size unlabeled data.

In summary, we propose the humble teacher for semi-
supervised object detection. It outperforms the previous
state-of-the-art in both low-data and high-data regimes. Its
use of soft-labels are pivotal to enable learning with abun-
dant proposals and also make the EMA and teacher ensem-
ble more effective for detection.

2. Related Work

2.1. Semi-supervised Learning in Classification

Significant progress has been made in semi-supervised
image classification [44, 4, 3, 51, 39, 21, 46, 17]. One dom-
inant idea in this field is pseudo-labeling [39, 1, 23, 39, 4, 3,
49, 45] — pseudo-labels for unlabeled data are repeatedly
generated by a pre-trained model, and the model is then
updated by training on a mix of pseudo-labels and human
annotated data. The state-of-the-art FixMatch [39] retains
only the highly confident hard pseudo-labels for training,
and adopts different data augmentation strategies for label
creation and training. Our method draws inspiration from it
to use separately augmented inputs for pseudo-labeling and
training. Our method is different in that we adopt two sep-
arate models — a student network that learns from pseudo-
labels, and a teacher model that annotates pseudo-labels
with the aid of a task-specific ensemble. Moreover, we use
soft pseudo-labels while [39] uses hard labels. We addi-
tionally update our student and teacher models using two
different strategies.

Another popular approach is the consistency regulariza-
tion [21, 44]. It penalizes the inconsistency between two
softmax predictions from different perturbations, such as
differently augmented inputs [21], prediction and temporal
ensemble prediction [21]. Our adoption of using soft la-
bel is partially inspired by consistency regularization, and
extends the soft label idea beyond class probability to also
bounding box regression offsets, where we keep the pre-
dicted offsets of all classes as the soft labels.

A consistency regularization approach, the Mean
Teacher [44], is worth mentioning. The Mean Teacher
adopts a teacher-student approach and the teacher is up-
dated from the student by the exponential moving averag-
ing. It applies consistency constraints [44] between softmax
predictions of the teacher and the student. Besides being
designed for a different detection task, our method looks
similar to the Mean Teacher, but there is a critical differ-
ence that significantly improves our performance. Instead
of feeding two strongly augmented copies to the teacher
and the student for consistency regularization, our teacher
sees the original image to make as-accurate-as-possible pre-
dictions as pseudo-labels, and our student sees the strongly
augmented image to learn more generalizable features. Fix-
Match [39] already demonstrates the big gain of pseudo-
labeling compared with the consistency regularization.

2.2. Semi-supervised Learning in Object Detection

The pioneering work [34] explores a self-learning ap-
proach in object detection based on Mahalanobis metric.
Several works [12, 16, 43] have made progress in utilizing
image-level labels to aid semi-supervised object detection.
Adopting ideas similar to those in semi-supervised image
classification also leads to progress [52]. Recently, Sohn
et al. [40] established a new state-of-the-art by combining
self-learning and consistency regularization. Our work is
inspired by it but differs in many ways and attains much
better performance. First, their approach only has a single
network, while we adopt a framework with separate teacher
and student networks as in the Mean Teacher [44]. Second,
we generate pseudo-labels from the teacher and train the
student simultaneously, while they generate all the pseudo-
labels only once and then train on the fixed pseudo-labels.
Third, we use soft labels as the pseudo-labels, while they
use hard labels.

Jeong et al. recently proposed CSD [19] which horizon-
tally flips an image and enforces its output to be consistent
with that from the original image. CSD inspires our task-
specific data ensemble of flipping images for teacher net-
work. Our idea differs from CSD in the way the flipped
images are used: we average the outputs from the origi-
nal and flipped images to create better pseudo-labels, while
CSD uses flipped images to enforce a consistency loss. Ad-
ditionally, CSD [19] and its follow-up work ISD [20] focus
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Figure 2: An overview of our Humble Teacher approach. The teacher model produces soft pseudo-labels for the student to
learn from, and is updated via exponential moving average (EMA).

on the grid-sampled boxes in single-stage object detectors,
while our approach applies to the bounding box proposals
in two-stage object detectors such as Faster R-CNN [31].

3. Approach
3.1. Overview

Our approach learns a two-stage object detector from
both labeled and unlabeled images. During training, the
framework takes a mixed batch of equal numbers of labeled
and unlabeled images as input and feeds them into the su-
pervised branch and the unsupervised branch respectively.
The final loss L is the sum of the supervised loss LS and
the unsupervised loss LU ,

L = LS +
nU
nS

βLU , (1)

where nU , nS are the numbers of unlabeled and labeled im-
ages, and β is set to 0.5 by default.
The supervised branch It is a standard supervised two-
stage detector like Faster R-CNN [31]. The regular detec-
tion losses are applied — the RPN’s classification loss Lrpn

cls

and localization loss Lrpn
loc , as well as the ROI head’s clas-

sification loss Lroi
cls and localization loss Lroi

loc. The total su-
pervised loss is

LS = Lrpn
cls + Lrpn

loc + Lroi
cls + Lroi

loc. (2)

The unsupervised branch It adopts a teacher-student
framework as shown in Fig 2. The teacher, student, and
the supervised network share the same architecture (we use
Faster R-CNN [31] in our experiments) and are initialized
with the same weights. The student shares the same weights
with the supervised network but not with the teacher. An
unlabeled image is processed independently by both the
student and the teacher networks. The teacher network
utilizes a task-specific ensemble to predict a pseudo-label

from a weakly augmented version of the image (random
flipping). It only predicts the pseudo-label and does not
back-propagate gradients. The student takes a strongly aug-
mented version of the same image as input to make predic-
tions. An unsupervised loss LU is then calculated between
the student predictions and the pseudo-labels in RPN and
ROI heads.
Augmentation Augmentation plays an important role in
our model. For training, the image first goes through ran-
dom flipping and resizing as the weak augmentation. The
teacher network takes the weakly augmented image as its
input (Sec. 3.4). Upon the same weakly augmented image,
we further randomly change the color, sharpness, contrast,
add Gaussian noise and apply cutouts [10]. We refer to the
final image as strongly augmented from the original image.
Our strong augmentation strategy follows [40] largely, but
we did not use random rotation because bounding boxes
will no longer be tightly wrapping around the rotated ob-
jects, making the setting undesirably complicated. Using
strongly augmented images increases the difficulty of the
student’s task and can encourage it to learn better represen-
tations [38]. In contrast, using weak augmentations for the
teacher can increase the chance for the teacher to generate
correct pseudo-labels. Our detailed augmentation method is
described in the supplementary material.
Inference Stage We use the teacher model for inference and
produce final object detection results. No data augmenta-
tion is applied to the input image at the inference stage.

3.2. Soft Labels and Unsupervised Loss

The unsupervised branch uses soft labels predicted by
the teacher model as training targets in the classification and
regression tasks. For the classification task, the soft label
target is the predicted distribution of the class probabilities.
For the bounding box regression task, the soft label target is
the offsets of all possible classes when the head is perform-



ing class-dependent bounding box regression [13]. We ap-
ply unsupervised loss in both the RPN (first stage) and ROI
heads (second stage) of our object detector. The choice of
using soft labels deviates from common practices of using
hard labels [40, 39], where the object categories and offsets
are selected when the pseudo-labels are generated.

In the first stage, the unsupervised loss is applied to both
the classification objectness and the bounding box regres-
sion of the RPN for all anchors SA. Let srpn,icls and srpn,ireg de-
note the classification probability and bounding box regres-
sion output by the student RPN for the i-th proposal, and let
trpn,icls and trpn,ireg be those of the teacher RPN. Note that the
weak augmentations for teacher and student are shared and
in sync. The remaining strong augmentation steps do not
impact the image geometry. Consequently, the anchor set is
the same for the teacher and the student. The unsupervised
loss for the RPN is defined as

Lrpn
U =

∑
i∈SA

DKL(trpn,icls ‖s
rpn,i
cls )+‖trpn,ireg −srpn,ireg ‖2, (3)

where DKL is the KL divergence.
In the second stage, the teacher model’s RPN generates

a set of region proposals, where the standard RPN NMS is
applied [31]. The teacher model keeps the top-N propos-
als ranked by the predicted objectness score for the pseudo-
label generation. It is different from the supervised branch,
which follows the standard RPN training mode of Faster R-
CNN to randomly sample a fix ratio of positive and negative
region proposals. We setN = 640 by default and use SP to
denote the set of top-N proposals from the teacher. SP are
fed to the ROI heads of both teacher and student. The stu-
dent’s RPN proposals are not used in its ROI head training
as the teacher’s proposals are often of higher quality than
those from the student. This design also eliminates the need
to match proposals between the teacher and student, which
could lead to complicated details.

For each region proposal, the student learns the raw
probability and class-dependent regression outputs from the
teacher. Let sroi,icls , sroi,ireg , troi,icls , troi,ireg denote the classifi-
cation probabilities and all-class bounding box regression
outputs by the student and teacher ROI head for the i-th
proposal respectively, our final ROI consistency loss is

Lroi
U = Σi∈SP

DKL(troi,icls ‖s
roi,i
cls ) + ‖troi,ireg − sroi,ireg ‖2. (4)

The final unsupervised loss LU is the sum of Lroi
U and Lrpn

U .
The use of all top-N regions proposals results in abun-

dant box instances for pseudo-labels. They are likely to
cover the actual objects, boxes moderately overlapped with
objects, and background regions, leading to a more com-
prehensive representation of the detection score distribution
over the entire image. These benefits are unattainable when
using hard labels. Many regions are neither strictly fore-
ground nor background, and the hard labels cannot repre-
sent such intermediate states. The hard label setting, such

as in [40], naturally needs a sample selection process like
NMS and score-based thresholding to get definite pseudo
ground truths.

3.3. Exponential Moving Average for the Teacher
Model Update

The teacher model weights Wteacher are updated from
the student model weights Wstudent by exponential moving
average (EMA) [44]. At each iteration, we have

Wteacher = αWteacher + (1− α)Wstudent, (5)

where we set α = 0.999. Therefore, the teacher only
slightly updates itself from the student each time. The grad-
ually updated teacher is more resilient to the sudden weight
turbulence of the student due to a wrong label prediction
of the teacher model — even if the student is fed with a
wrong label, its influence on the teacher model is mitigated
by the exponential moving average. Besides resiliency to
occasional wrong pseudo-labels, EMA is also known to lead
to better generalization [18].

It is worth noting that we follow Faster R-CNN [31] to
fix the running mean and variance of the BatchNorm layers
in the training.

3.4. Teacher Ensemble with Horizontal Flipping

We ensemble the teacher model by taking as input both
the image and its horizontally flipped version. The under-
lying intuition is that object classes should remain the same
when the image is flipped, and the average prediction from
both the original and the flipped copy can be more accurate
than the prediction from a single image. Our design is in-
spired by prior research on ensemble methods [33, 29, 53],
and by human pose estimation literature in which combin-
ing predictions from the original and the flipped image has
lead to better pose estimation [28, 41, 8]. Experiments in
Sec. 5.4 show that our teacher ensemble leads to superior
semi-supervised object detection performance.

More specifically, let fB be the backbone feature of the
original image, f̂B be the backbone feature of the flipped
image, and P be the set of proposals detected by RPN on the
original image. We do not use RPN to propose regions for
the flipped image but instead flip the proposal coordinates
in P horizontally to obtain P̂ as the proposals for the flipped
image. Then, for the ROI head, its softmax class probabil-
ity output Pcls and regression offset output σreg from the
ensemble are:

f = ROIAlign(fB , P ), (6)

f̂ = ROIAlign(f̂B , P̂ ), (7)

Pcls = 0.5(C(f) + C(f̂)), (8)

σreg = 0.5(R(f) + T (R(f̂))). (9)



Model Labeled Dataset Unlabeled Dataset AP50 AP

Supervised model VOC07 N/A 76.3 42.60
Supervised model VOC07 + VOC12 N/A 82.17 54.29

CSD‡ VOC07 VOC12 76.76 42.71
STAC [40] VOC07 VOC12 77.45 44.64
Humble teacher (ours) VOC07 VOC12 80.94 53.04

CSD‡ VOC07 VOC12 + MS-COCO20 (2017) 77.10 43.62
STAC [40] VOC07 VOC12 + MS-COCO20 (2017) 79.08 46.01
Humble teacher (ours) VOC07 VOC12 + MS-COCO20 (2017) 81.29 54.41

Table 1: Results on Pascal VOC, evaluated on the VOC07 test set. Our model consistently outperforms others in all ex-
periment setups. CSD‡ is our ResNet-50-based re-implementation, which achieves better performance than the original
CSD [19].

Note that C is the classification head including softmax at
the end, and R is the regression head. T is the transforma-
tion that flips the x axis of all bounding boxes. We apply
this ensemble mechanism only to create pseudo-labels in
the ROI heads but not RPN heads, because the correspond-
ing anchors in a flipped pair of images may not be symmet-
ric in the RPN head.

4. Experiments

4.1. Dataset and Evaluation

We evaluate our approach on two detection datasets: Pas-
cal VOC [11] and MS-COCO [25]. For Pascal VOC, we
evaluate the performance on the VOC07 test. During train-
ing, we first use VOC07 trainval as the labeled dataset and
VOC12 trainval as the unlabeled dataset. VOC07 trainval
and VOC12 trainval have 5,011 and 11,540 images respec-
tively, resulting in a roughly 1:2 labeled to unlabeled ratio.
Following the practice in [19, 40], besides VOC12 trainval,
we also bring MS-COCO20 [19, 40] in as additional unla-
beled data. MS-COCO20 filters out the MS-COCO images
that contain objects whose classes are not included in the
20 Pascal VOC classes. We conduct additional experiments
using both the VOC12 trainval and MS-COCO20 train as
unlabeled data, totaling 129,827 unlabeled images, leading
to a 1:26 labeled to unlabeled ratio.

For MS-COCO, we use version 2017 in all experiments.
We report the results on the MS-COCO val dataset. For
training, we follow [40] to split MS-COCO train into the
labeled and the unlabeled datasets. We set up four label-
ing percentages: 1%, 2%, 5%, and 10% as in [40], and the
remaining images are used as unlabeled data. For each per-
centage, we randomly sample five different splits using the
provided code from [40]. The same splits are used through-
out our experiments and ablation studies. In addition, we
also set up an experiment using the entire MS-COCO train
as labeled dataset, and MS-COCO unlabeled as unlabeled

dataset. MS-COCO train has a total of 118,287 images
and MS-COCO unlabeled has 123,403 in total, leading to
a roughly 1:1 labeled to unlabeled ratio. We run this ex-
periment to demonstrate that our approach is able to further
improve upon a model trained on a large labeled dataset like
MS-COCO.

4.2. Model Configurations

We use Faster R-CNN with ResNet-50 backbone and
FPN as our default base model. We re-implement CSD with
ResNet-50 backbone for fair comparison, and it achieves
better performance than the original model in [19]. We also
evaluate our method on a larger base model Cascade R-
CNN with ResNet-151 backbone and FPN [5, 24]. When
training on Cascade R-CNN, we apply our unsupervised
loss on the ROI head at each stage .

Before training on unlabeled data, the model first goes
through a burn-in stage, i.e. pre-training the detection net-
work on the labeled data following standard training proto-
cols [31]. This model is the base supervised model, and its
weights are copied into the student and the teacher networks
to initiate the semi-supervised training.

4.3. Results on Pascal VOC

We benchmark our method on PASCAL VOC under two
experiment setups — (a) VOC07 as labeled set and VOC12
as unlabeled set, and (b) the same as (a) but with MS-
COCO20 as additional unlabeled data. We also report the
performance of the same model trained fully supervised on
VOC07 and VOC07+VOC12. Tab. 1 compares our results
with the best existing methods under AP50 and MS-COCO
style AP metrics.

Our approach consistently outperforms the best exist-
ing results by a large margin in all setups. It outperforms
the state-of-the-art STAC [40] by 8.4% and 8.4% in AP
respectively in setup (a) and (b). Notably, our method
trained on the labeled VOC07 and the unlabeled VOC12



Percentage labeled 1% 2% 5% 10%

Supervised model 9.05±0.16 12.70±0.15 18.47±0.22 23.86±0.81
CSD‡ 11.12±0.15 (+2.07) 14.15±0.13 (+1.45) 18.79±0.13 (+0.32) 22.76±0.09 (−1.10)
STAC [40] 13.97±0.35 (+4.92) 18.25±0.25 (+5.55) 24.38±0.12 (+5.91) 28.64±0.21 (+4.78)
Humble teacher (ours) 16.96±0.38 (+7.91) 21.72±0.24 (+9.02) 27.70±0.15 (+9.23) 31.61±0.28 (+7.74)

Table 2: The mAP (50:95) results on MS-COCO val 2017 by models trained on different percentage of labeled MS-COCO
train 2017. All models are with the ResNet-50 backbone. CSD‡ is our re-implementation with better performance. Our
method consistently outperforms others.

significantly outperforms the based model fully supervised
on VOC07 alone, and with the additional unlabeled MS-
COCO20 it further improves performance. Our best per-
forming model is narrowing the gap from 9.65% to 1.25%
in COCO style mAP between the model fully supervised on
VOC07+VOC12 and the model trained on labeled VOC07
and unlabeled VOC12. These results suggest that our
method is particularly effective in improving model perfor-
mance with cheap unlabeled data.

Moreover, our model outperforms CSD and STAC more
on the 0.5:0.95 AP than on AP50 regarding both absolute
gain and relative error reduction. It indicates that the hum-
ble teacher could localize objects more accurately. This
may be attributed to the use of soft labels over the full set of
region proposals, which leads to more guidance for the stu-
dent model to learn on image regions without definite labels
even given the ground truth annotations. Such guidance has
been shown to be helpful for localization [50].

4.4. Results on MS-COCO

4.4.1 MS-COCO of Different Labeled Percentages

We first investigate if the proposed humble teacher im-
proves performance under a low data regime. We follow
the setup of STAC [40] and report the performance when
four percentages of labeled MS-COCO train is provided:
1%, 2%, 5% and 10%, while the remaining images are
used as unlabeled data. Comparison with the best exist-
ing approaches on MS-COCO val in terms of mAP (50:95)
is shown in Tab. 2. Our method consistently outperforms
the best existing approach over all four labeled percentages.
Notably, unlike CSD, the amount of improvement does not
diminish, and the improvement is consistent though the per-
centage of labeled data increases.

4.4.2 MS-COCO Train + MS-COCO Unlabeled

Next, we investigate if the proposed semi-supervised learn-
ing strategy improves upon an object detector fully super-
vised on the entire MS-COCO train. We use the MS-COCO
unlabeled [25], a set of 123,403 unlabeled images differed
from those in MS-COCO train. We experiment with two
setups, one is with Faster R-CNN [31] and another with

Model (Faster R-CNN with Resnet-50) AP

Base supervised model 37.63
MOCOv2 + MS-COCO Unlabeled [7] 35.29
MOCOv2 + ImageNet-1M [7] 40.80
MOCOv2 + Instagram-1B [7] 41.10
Proposal learning [42] 38.4
CSD‡ 38.52(+0.89)
STAC [40] 39.21(+1.58)
Humble teacher (ours) 42.37(+4.74)
Model (Cascade R-CNN with ResNet-152) AP

Base supervised model 50.23
Humble teacher (ours) 53.38 (+3.15)

Table 3: The mAP (50:95) results on MS-COCO val 2017
by models trained on MS-COCO train 2017 + MS-COCO
unlabeled. CSD‡ is with a ResNet-50 backbone.

Model (Cascade R-CNN with ResNet-152) AP

Base supervised model 50.7
Humble teacher (ours) 53.8 (+3.1)

Table 4: The mAP (50:95) results on MS-COCO test-dev
2017 by models trained on MS-COCO train 2017 + MS-
COCO unlabeled.

Casacade R-CNN [5]. The results are evaluated on MS-
COCO val. In the Faster R-CNN case, the baseline model
supervised on the full MS-COCO train achieves 37.63%
AP. Our method achieves a 4.74% improvement in AP over
the baseline (Tab. 3), and significantly outperforms other
self-supervised methods such as Proposal Learning [42],
CSD [19] and STAC [40]. In the Cascade R-CNN case,
our method achieves a 3.15% improvement in AP over the
high-performing fully supervised baseline (Tab. 3). Further
evaluation on the MS-COCO test-dev shows a 3.1% AP im-
provement over the supervised Cascade R-CNN (Tab. 4).
These results suggest that our method has the potential to
directly apply to any object detectors and improve their per-
formance by combining both labeled and unlabeled data.

We also compare against supervised finetuning with pre-
trained MOCOv2 [7], a state-of-the-art contrastive learn-



ing method for image classification pretraining. The goal
is to show that a simple application of contrastive learn-
ing [7, 15, 6] does not work as well as our method in im-
proving object detection from unlabeled data. More specifi-
cally, we follow the MOCOv2 setup to pre-train the ResNet-
50 backbone in Faster R-CNN on each of the three unla-
beled dataests: (1) MS-COCO unlabeled, (2) ImageNet-
1M [9] and (3) Instagram-1B [27]. The pre-trained back-
bones are then copied to Faster R-CNN, which is further
trained on MS-COCO train to perform object detection. Re-
sults in Tab. 3 suggest that object detection performance
improves as the size of the unlabeled data increases. How-
ever, even the best-performing one (MOCOv2 pre-trained
on Instagram-1B) still underperforms our method, although
it uses 7,600 times more unlabeled data than our method.

5. Ablation Study
5.1. Number of Proposals for Unsupervised Loss

We first study how the number of region proposals fed
into ROI head in unsupervised learning affects the perfor-
mance. As shown in Fig. 3a, we experiment with different
numbers of proposals up to 6000 given the GPU memory
limit. We found that using too few region proposals hurts
performance, possibly because of a poor coverage of ob-
jects and useful context. Having too many region propos-
als may include too many background samples, distracting
the unsupervised learning from the important foreground
regions [19]. Given the large performance drop when the
proposals are too few or too many, we believe that using a
balanced number of proposals with soft labels is the key to
the superior performance of our method.

5.2. Update Rules

This section studies the benefits of our EMA update at
every iteration. The teacher model is updated from the stu-
dent model. We study three rules with different update
frequencies: (1) EMA update at every iteration, (2) copy
weights from student to teacher every 10K iterations, and
(3) no update at all, i.e. keeping the teacher model fixed
throughout the training. We still use Faster R-CNN with
ResNet-50 for all the rules and trained on 10% labeled MS-
COCO train 2017. Tab. 5 reports the mean and standard de-
viations over five runs using the same five splits described
in Sec. 4.1.

Updating every 10K iterations outperforms no update at
all. It suggests that keeping the teacher model up to date
than using a fixed teacher is beneficial to model perfor-
mance. EMA update at every iteration leads to even bigger
performance gain. The results suggest that EMA updates
are crucial for our student-teacher model to work well. One
possible explanation is that the negative effect of incorrect
pseudo-labels is mitigated by EMA update at every itera-

tion, since the weight updates from one example batch are
being averaged over time and sample batches.

The success of EMA is based on the assumption that
EMA-updated teacher produces more accurate predictions
than the student. To validate this assumption, we compare
the object detection results on the 10% labeled MS-COCO
train 2017 setup using the student and the EMA-updated
teacher model. Fig. 3b shows that the EMA-updated teacher
is better than the student and therefore explains the success
of our student-teacher paradigm.

5.3. Soft Labels versus Hard Labels

Next, we turn to the comparison between soft labels and
hard labels in our semi-supervised framework. We use the
same Faster R-CNN with ResNet-50 setup as before, and
train on the 10% labeled MS-COCO train 2017, using the
same EMA update and teacher-student framework. We then
compare a version that trains on soft labels and another that
trains on hard labels. Note that the hard labels are gener-
ated by thresholding on the prediction confidence. We ex-
periment with a range of thresholds and select 0.7 which
leads to the best performance. Moreover, given it is un-
clear how to combine the hard label from an original image
and its flipped version, we exclude the task specific data
ensemble from both experiments for fairness of compari-
son. Tab. 6 reports the results. Contrary to the findings in
semi-supervised image classification [39], using soft labels
help us achieve much better performance than hard labels in
semi-supervised object detection, clearly demonstrating the
critical role of soft labels plays in our method.

One possible explanation to the better performance due
to the soft label is its strength to handle the highly im-

Model AP

No update 27.26±0.21
Copy weights from student to teacher every 10K iters 28.61±0.18
EMA update at every iter 31.61±0.28

Table 5: Comparison between different update rules on MS-
COCO train 2017 with 10% data labeled. The mean and
standard deviation over five data splits are reported (the
same five splits of MS-COCO train 2017 as in Sec. 4.1).

Model AP

With hard label 27.97±0.13
With soft label 30.97±0.16

Table 6: Comparison between training on soft label and
hard label when 10% labeled MS-COCO train 2017 is pro-
vided. The mean and standard deviation over five data splits
are reported (the same five splits of MS-COCO train 2017
described in Sec. 4.1).
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(a) Comparison between models with different
number of region proposals used in unsupervised
loss. The student-teacher framework is jointly
trained on the 10% labeled and 90% unlabeled
MS-COCO train 2017 split.
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(b) Comparison between teacher and student per-
formance on the 10% labeled MS-COCO train
2017 setup. The student-teacher framework is
jointly trained on the 10% labeled and 90% un-
labeled MS-COCO train 2017 split.
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(c) Teacher models’ performance on unlabeled
data. Both models are trained on 10% labeled MS-
COCO train 2017 with the remaining 90% as un-
labeled.

Figure 3: Ablation study on hyperparameters and hard/soft labels.

balanced class distribution in object detection. This im-
balanced issue is reflected in two aspects. First, back-
ground class dominates foreground classes during region
proposal [31]. Second, foreground classes are not evenly
distributed during ROI classification, as evident in the case
of MS-COCO [25]. Using hard labels in such an imbal-
anced setup has the risk of pushing the probability of being
dominant classes to 1 and the probability of being minority
classes to 0, resulting in significant confirmation bias [2]. In
contrast, soft labels carry richer information and retain the
probability of being any possible classes, and suffer from
less confirmation bias.

To validate this hypothesis, we experiment with the 10%
labeled MS-COCO train 2017 setup, and run object detec-
tion every 1,000 iterations using the teacher model on the
remaining 90% unlabeled images and evaluate the detection
mAP. Fig. 3c reports the mAP as training proceeds. We see
that training on soft labels yields much higher mAP, and the
mAP keeps increasing as the training goes on, while train-
ing on hard labels yields diminishing mAP. These results
indicate that soft-label-trained teachers produce pseudo-
labels that suffer from less confirmation bias.

5.4. Teacher Ensemble

We study the effectiveness of Teacher Ensemble. Fix-
Match [39] and ReMixMatch [3] claim a data ensemble of
random augmentations may hurt the teacher model perfor-
mance, and is worse than weak augmentations (resizing and
randomly flipping) applied to the inputs of the teacher. We
find this partially true, and show that our teacher ensemble
improves performance in semi-supervised object detection.

Our experiment is based on the same Faster R-CNN with
ResNet-50 trained on 10% labeled MS-COCO train 2017.
We compare three setups: (1) without ensemble, (2) with
a random augmented ensemble on teacher model, and (3)
with task-specific data ensemble on teacher model. Tab. 7

reports the results.

Model AP

No ensemble 30.97±0.16
Random augmented ensemble 30.79±0.31
Task-specific ensemble 31.61±0.28

Table 7: Effects of using different ensemble strategies on
the teacher model on MS-COCO train 2017 with 10% data
labeled. The mean and standard deviation over five data
splits are reported (the same five splits of MS-COCO train
2017 described in Sec. 4.1).

Consistent with the findings in FixMatch [39], the ran-
dom augmentation ensemble indeed hurts performance.
Nonetheless, with our task-specific data ensemble (ensem-
bling a pair of flipped and original images), the perfor-
mance improves by 0.64% AP, suggesting that a carefully
constructed ensemble is advantageous to the overall perfor-
mance of our semi-supervised object detection method.

6. Conclusions
We developed a semi-supervised object detection algo-

rithm, “Humble Teacher” that obtained state-of-the-art per-
formance on multiple benchmarks. We demonstrated the ef-
fectiveness of our teacher-student model design and showed
the importance of iteration-wise EMA teacher update. We
found that soft label coupled with a balanced number of
teacher’s region proposals is the key toward superior per-
formance. We also found that a carefully constructed data
ensemble for the teacher improves the overall performance.
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landréa, Robert Gaizauskas, and Liming Chen. Large scale
semi-supervised object detection using visual and semantic
knowledge transfer. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2119–
2128, 2016. 2

[44] Antti Tarvainen and Harri Valpola. Mean teachers are better
role models: Weight-averaged consistency targets improve
semi-supervised deep learning results. In Advances in Neural
Information Processing Systems, pages 1195–1204, 2017. 1,
2, 4

[45] Keze Wang, Xiaopeng Yan, Dongyu Zhang, Lei Zhang, and
Liang Lin. Towards human-machine cooperation: Self-
supervised sample mining for object detection. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1605–1613, 2018. 2

[46] Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Luong,
and Quoc V Le. Unsupervised data augmentation for con-
sistency training. arXiv preprint arXiv:1904.12848, 2019. 1,
2

[47] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V.
Le. Self-training with noisy student improves ImageNet clas-
sification. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, June 2020. 1

[48] David Yarowsky. Unsupervised word sense disambiguation
rivaling supervised methods. In 33rd Annual Meeting of the
Association for Computational Linguistics, pages 189–196,
1995. 1

[49] Xiaohua Zhai, Avital Oliver, Alexander Kolesnikov, and Lu-
cas Beyer. S4L: Self-supervised semi-supervised learning. In
Proceedings of the IEEE International Conference on Com-
puter Vision, pages 1476–1485, 2019. 1, 2

[50] Yuting Zhang, Kihyuk Sohn, Ruben Villegas, Gang Pan, and
Honglak Lee. Improving object detection with deep convo-
lutional networks via Bayesian optimization and structured
prediction. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 249–258, June 2015. 6

[51] Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled
and unlabeled data with label propagation. CMU CALD Tech
Report CMU-CALD-02-107, 2002. 2

[52] Barret Zoph, Golnaz Ghiasi, Tsung-Yi Lin, Yin Cui, Hanx-
iao Liu, Ekin Dogus Cubuk, and Quoc Le. Rethinking pre-
training and self-training. In H. Larochelle, M. Ranzato, R.
Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neu-
ral Information Processing Systems, volume 33, pages 3833–
3845. Curran Associates, Inc., 2020. 2

[53] Xu Zou, Sheng Zhong, Luxin Yan, Xiangyun Zhao, Jiahuan
Zhou, and Ying Wu. Learning robust facial landmark de-
tection via hierarchical structured ensemble. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 141–150, 2019. 4


